| L(s) = 1 | + (0.939 − 0.342i)3-s + (−0.554 + 3.14i)5-s + (2.51 + 4.36i)7-s + (0.766 − 0.642i)9-s + (1.30 − 2.25i)11-s + (0.271 + 0.0989i)13-s + (0.554 + 3.14i)15-s + (−5.14 − 4.31i)17-s + (−0.261 + 4.35i)19-s + (3.85 + 3.23i)21-s + (0.502 + 2.85i)23-s + (−4.87 − 1.77i)25-s + (0.500 − 0.866i)27-s + (−0.423 + 0.354i)29-s + (1.38 + 2.39i)31-s + ⋯ |
| L(s) = 1 | + (0.542 − 0.197i)3-s + (−0.247 + 1.40i)5-s + (0.952 + 1.64i)7-s + (0.255 − 0.214i)9-s + (0.392 − 0.679i)11-s + (0.0754 + 0.0274i)13-s + (0.143 + 0.811i)15-s + (−1.24 − 1.04i)17-s + (−0.0600 + 0.998i)19-s + (0.842 + 0.706i)21-s + (0.104 + 0.594i)23-s + (−0.975 − 0.355i)25-s + (0.0962 − 0.166i)27-s + (−0.0785 + 0.0659i)29-s + (0.248 + 0.430i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0449 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0449 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.37560 + 1.31509i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.37560 + 1.31509i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.939 + 0.342i)T \) |
| 19 | \( 1 + (0.261 - 4.35i)T \) |
| good | 5 | \( 1 + (0.554 - 3.14i)T + (-4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (-2.51 - 4.36i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.30 + 2.25i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.271 - 0.0989i)T + (9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (5.14 + 4.31i)T + (2.95 + 16.7i)T^{2} \) |
| 23 | \( 1 + (-0.502 - 2.85i)T + (-21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (0.423 - 0.354i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (-1.38 - 2.39i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 11.4T + 37T^{2} \) |
| 41 | \( 1 + (-7.80 + 2.84i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (0.586 - 3.32i)T + (-40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (-8.22 + 6.90i)T + (8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + (-0.0123 - 0.0699i)T + (-49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (-3.86 - 3.24i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (-0.550 - 3.12i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (-9.18 + 7.70i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-0.654 + 3.71i)T + (-66.7 - 24.2i)T^{2} \) |
| 73 | \( 1 + (-9.52 + 3.46i)T + (55.9 - 46.9i)T^{2} \) |
| 79 | \( 1 + (4.70 - 1.71i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (5.45 + 9.45i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.20 - 1.53i)T + (68.1 + 57.2i)T^{2} \) |
| 97 | \( 1 + (-7.68 - 6.44i)T + (16.8 + 95.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41400407118759992930692956256, −9.164261375605559929857390343106, −8.712212321189899046449816961604, −7.80113399290133176181350353972, −6.93971684530290712953734887251, −6.07854746283251372711220713929, −5.13235848878687679617887110982, −3.71684402496474787217986141000, −2.75290901083391322819180356654, −1.96605304012156984473080703686,
0.884277457200542746216670392945, 2.01100036147581823553821394205, 4.00668000063885255115044588429, 4.33610936618950631829717570849, 5.08261945444944377394398809425, 6.71045568294742837132338320266, 7.47985812247191548291099540899, 8.391163756583891757996212203462, 8.827633036635819392466621984393, 9.827336089647770100310301617261