Properties

Label 2-912-12.11-c1-0-25
Degree $2$
Conductor $912$
Sign $-0.582 + 0.812i$
Analytic cond. $7.28235$
Root an. cond. $2.69858$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.57 + 0.714i)3-s + 1.85i·5-s + 0.707i·7-s + (1.97 − 2.25i)9-s − 4.63·11-s − 1.78·13-s + (−1.32 − 2.91i)15-s + 1.47i·17-s + i·19-s + (−0.505 − 1.11i)21-s − 2.68·23-s + 1.57·25-s + (−1.51 + 4.97i)27-s − 2.44i·29-s − 6.63i·31-s + ⋯
L(s)  = 1  + (−0.910 + 0.412i)3-s + 0.827i·5-s + 0.267i·7-s + (0.659 − 0.751i)9-s − 1.39·11-s − 0.494·13-s + (−0.341 − 0.753i)15-s + 0.358i·17-s + 0.229i·19-s + (−0.110 − 0.243i)21-s − 0.559·23-s + 0.315·25-s + (−0.290 + 0.956i)27-s − 0.453i·29-s − 1.19i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.582 + 0.812i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.582 + 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(912\)    =    \(2^{4} \cdot 3 \cdot 19\)
Sign: $-0.582 + 0.812i$
Analytic conductor: \(7.28235\)
Root analytic conductor: \(2.69858\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{912} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 912,\ (\ :1/2),\ -0.582 + 0.812i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0186913 - 0.0363956i\)
\(L(\frac12)\) \(\approx\) \(0.0186913 - 0.0363956i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.57 - 0.714i)T \)
19 \( 1 - iT \)
good5 \( 1 - 1.85iT - 5T^{2} \)
7 \( 1 - 0.707iT - 7T^{2} \)
11 \( 1 + 4.63T + 11T^{2} \)
13 \( 1 + 1.78T + 13T^{2} \)
17 \( 1 - 1.47iT - 17T^{2} \)
23 \( 1 + 2.68T + 23T^{2} \)
29 \( 1 + 2.44iT - 29T^{2} \)
31 \( 1 + 6.63iT - 31T^{2} \)
37 \( 1 + 3.04T + 37T^{2} \)
41 \( 1 + 4.95iT - 41T^{2} \)
43 \( 1 + 6.80iT - 43T^{2} \)
47 \( 1 + 8.19T + 47T^{2} \)
53 \( 1 + 3.89iT - 53T^{2} \)
59 \( 1 + 8.14T + 59T^{2} \)
61 \( 1 + 11.9T + 61T^{2} \)
67 \( 1 + 4.84iT - 67T^{2} \)
71 \( 1 - 6.09T + 71T^{2} \)
73 \( 1 + 15.0T + 73T^{2} \)
79 \( 1 - 2.21iT - 79T^{2} \)
83 \( 1 - 2.65T + 83T^{2} \)
89 \( 1 + 10.9iT - 89T^{2} \)
97 \( 1 + 9.45T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.22045589180438700907456705355, −9.158071303055519079471455294564, −7.943434435199061942549101477531, −7.19237062815605567300220335399, −6.19887897448914731317820732334, −5.50113225996287218029024652850, −4.57464444853593615307748305118, −3.39376194091474647302125017192, −2.21343297828125477655371735620, −0.02178341831154577098022560703, 1.41438663293719526843537893690, 2.86991083533696236791450757852, 4.62043684250207362171974480161, 5.02621750703964960325088420838, 5.95972296512921233199700848956, 7.04437122250150371510256656687, 7.75099799567384206350677109149, 8.589598267497443937516600681034, 9.717086802081990869544294650540, 10.48202315796750458575569016668

Graph of the $Z$-function along the critical line