| L(s) = 1 | + (−1.50 + 0.849i)3-s − 0.771i·5-s + 1.48i·7-s + (1.55 − 2.56i)9-s + 4.34·11-s − 5.42·13-s + (0.655 + 1.16i)15-s − 7.36i·17-s + i·19-s + (−1.26 − 2.24i)21-s + 1.65·23-s + 4.40·25-s + (−0.173 + 5.19i)27-s + 5.57i·29-s + 1.97i·31-s + ⋯ |
| L(s) = 1 | + (−0.871 + 0.490i)3-s − 0.345i·5-s + 0.561i·7-s + (0.519 − 0.854i)9-s + 1.31·11-s − 1.50·13-s + (0.169 + 0.300i)15-s − 1.78i·17-s + 0.229i·19-s + (−0.275 − 0.489i)21-s + 0.344·23-s + 0.880·25-s + (−0.0334 + 0.999i)27-s + 1.03i·29-s + 0.354i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0111i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0111i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.16717 - 0.00650511i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.16717 - 0.00650511i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.50 - 0.849i)T \) |
| 19 | \( 1 - iT \) |
| good | 5 | \( 1 + 0.771iT - 5T^{2} \) |
| 7 | \( 1 - 1.48iT - 7T^{2} \) |
| 11 | \( 1 - 4.34T + 11T^{2} \) |
| 13 | \( 1 + 5.42T + 13T^{2} \) |
| 17 | \( 1 + 7.36iT - 17T^{2} \) |
| 23 | \( 1 - 1.65T + 23T^{2} \) |
| 29 | \( 1 - 5.57iT - 29T^{2} \) |
| 31 | \( 1 - 1.97iT - 31T^{2} \) |
| 37 | \( 1 - 10.2T + 37T^{2} \) |
| 41 | \( 1 + 3.92iT - 41T^{2} \) |
| 43 | \( 1 + 8.99iT - 43T^{2} \) |
| 47 | \( 1 - 3.62T + 47T^{2} \) |
| 53 | \( 1 + 2.72iT - 53T^{2} \) |
| 59 | \( 1 - 1.94T + 59T^{2} \) |
| 61 | \( 1 - 12.2T + 61T^{2} \) |
| 67 | \( 1 - 10.8iT - 67T^{2} \) |
| 71 | \( 1 - 16.0T + 71T^{2} \) |
| 73 | \( 1 - 4.94T + 73T^{2} \) |
| 79 | \( 1 - 3.32iT - 79T^{2} \) |
| 83 | \( 1 + 17.0T + 83T^{2} \) |
| 89 | \( 1 + 4.94iT - 89T^{2} \) |
| 97 | \( 1 - 5.51T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.937149046423017720371742667057, −9.359612655642411024329885981920, −8.760639111474948532091724845318, −7.19600768740497750870936116920, −6.77681271356531374177453286423, −5.44863819961734556310317385905, −4.99203402000722076450208813709, −3.97827668689428976555584054625, −2.60514117227864126594214373197, −0.840529715052881975146053330808,
1.01799169082356786084474876732, 2.37181669005611856633589280411, 3.98180050559774282957072728837, 4.73904290365440930684120110087, 6.01903751125828108031458797645, 6.60269237760964936929926851541, 7.39087807348694346475607566825, 8.192569983750909672593216859696, 9.503634938501165588509045922177, 10.15148795141376070144739282286