Properties

Label 2-91-91.51-c1-0-4
Degree $2$
Conductor $91$
Sign $0.593 + 0.804i$
Analytic cond. $0.726638$
Root an. cond. $0.852431$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.287 + 0.166i)2-s + (−0.729 − 1.26i)3-s + (−0.944 − 1.63i)4-s + (1.25 + 0.722i)5-s − 0.485i·6-s + (2.26 − 1.36i)7-s − 1.29i·8-s + (0.434 − 0.752i)9-s + (0.240 + 0.416i)10-s + (−5.15 + 2.97i)11-s + (−1.37 + 2.38i)12-s + (1.88 + 3.07i)13-s + (0.879 − 0.0178i)14-s − 2.11i·15-s + (−1.67 + 2.90i)16-s + (2.16 + 3.74i)17-s + ⋯
L(s)  = 1  + (0.203 + 0.117i)2-s + (−0.421 − 0.729i)3-s + (−0.472 − 0.818i)4-s + (0.559 + 0.323i)5-s − 0.198i·6-s + (0.855 − 0.517i)7-s − 0.457i·8-s + (0.144 − 0.250i)9-s + (0.0759 + 0.131i)10-s + (−1.55 + 0.897i)11-s + (−0.398 + 0.689i)12-s + (0.524 + 0.851i)13-s + (0.234 − 0.00477i)14-s − 0.544i·15-s + (−0.418 + 0.725i)16-s + (0.524 + 0.909i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.593 + 0.804i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.593 + 0.804i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $0.593 + 0.804i$
Analytic conductor: \(0.726638\)
Root analytic conductor: \(0.852431\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{91} (51, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :1/2),\ 0.593 + 0.804i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.876787 - 0.442882i\)
\(L(\frac12)\) \(\approx\) \(0.876787 - 0.442882i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-2.26 + 1.36i)T \)
13 \( 1 + (-1.88 - 3.07i)T \)
good2 \( 1 + (-0.287 - 0.166i)T + (1 + 1.73i)T^{2} \)
3 \( 1 + (0.729 + 1.26i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + (-1.25 - 0.722i)T + (2.5 + 4.33i)T^{2} \)
11 \( 1 + (5.15 - 2.97i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 + (-2.16 - 3.74i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-1.69 - 0.978i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.270 - 0.467i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 - 7.15T + 29T^{2} \)
31 \( 1 + (-5.28 + 3.05i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (6.95 + 4.01i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 - 7.55iT - 41T^{2} \)
43 \( 1 + 4.24T + 43T^{2} \)
47 \( 1 + (5.42 + 3.13i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-1.38 - 2.40i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (0.737 - 0.425i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (3.38 - 5.87i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-0.854 + 0.493i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + 3.76iT - 71T^{2} \)
73 \( 1 + (7.91 - 4.56i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-0.0655 + 0.113i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 2.66iT - 83T^{2} \)
89 \( 1 + (8.41 + 4.85i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + 6.58iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.83850842482135824462129302117, −13.12316322059214598956670048589, −11.91849279654463271671913147940, −10.51508209781785656019349183493, −9.906246847262832227155575690299, −8.149852205467457546023436859941, −6.84729409217113839769038230182, −5.77553993869829805565338464082, −4.49966487807839062705494638302, −1.63654403988883554803373328344, 3.00106246872959921134663846082, 4.97959495625297585978182068865, 5.38052415871156941863602387319, 7.83966827088199177011111434015, 8.605990543306051291166695448085, 10.04726880894811592087676146048, 11.03344268823748555455612111038, 12.11311686567254046572861869044, 13.35006651612927895307379399965, 13.88260627987635354295234339344

Graph of the $Z$-function along the critical line