L(s) = 1 | + 0.732i·7-s + 1.73·11-s + 1.46i·13-s + 1.26i·17-s − 2.46·19-s − 3.46i·23-s − 4.26·29-s − 7.92·31-s + 4.19i·37-s + 0.803·41-s − 6.73i·43-s + 4.73i·47-s + 6.46·49-s − 10.7i·53-s − 4.26·59-s + ⋯ |
L(s) = 1 | + 0.276i·7-s + 0.522·11-s + 0.406i·13-s + 0.307i·17-s − 0.565·19-s − 0.722i·23-s − 0.792·29-s − 1.42·31-s + 0.689i·37-s + 0.125·41-s − 1.02i·43-s + 0.690i·47-s + 0.923·49-s − 1.47i·53-s − 0.555·59-s + ⋯ |
Λ(s)=(=(8100s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(8100s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
8100
= 22⋅34⋅52
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
64.6788 |
Root analytic conductor: |
8.04231 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ8100(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 8100, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
0.8043169040 |
L(21) |
≈ |
0.8043169040 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−0.732iT−7T2 |
| 11 | 1−1.73T+11T2 |
| 13 | 1−1.46iT−13T2 |
| 17 | 1−1.26iT−17T2 |
| 19 | 1+2.46T+19T2 |
| 23 | 1+3.46iT−23T2 |
| 29 | 1+4.26T+29T2 |
| 31 | 1+7.92T+31T2 |
| 37 | 1−4.19iT−37T2 |
| 41 | 1−0.803T+41T2 |
| 43 | 1+6.73iT−43T2 |
| 47 | 1−4.73iT−47T2 |
| 53 | 1+10.7iT−53T2 |
| 59 | 1+4.26T+59T2 |
| 61 | 1+4T+61T2 |
| 67 | 1+14.3iT−67T2 |
| 71 | 1−0.803T+71T2 |
| 73 | 1+10.1iT−73T2 |
| 79 | 1+6.39T+79T2 |
| 83 | 1−9.12iT−83T2 |
| 89 | 1+5.19T+89T2 |
| 97 | 1+2.73iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.58532059220180528423111794867, −6.85319282589035744324347460079, −6.26707533240463514297015927530, −5.57102585267548162113678575558, −4.76016505369932647820947080055, −4.00897604053955738836722710170, −3.34179194150733243741301246630, −2.25194070438566794164048200024, −1.59060936046664083177389947721, −0.19290917447958255108560666359,
1.08561613217301888949976881122, 2.02333429146801692597178282020, 2.99951132303552983284904893186, 3.83965080749752124721595933566, 4.38056870104588391142390359373, 5.43373247788282536580030267928, 5.84684302046422547312797541915, 6.76843687147166538265192234201, 7.40601667554485144387382239761, 7.86419007211873361848351230756