L(s) = 1 | + 4i·7-s + 3·11-s − 4i·13-s − 5·19-s − 6i·23-s + 9·29-s + 5·31-s − 2i·37-s − 9·41-s − 10i·43-s + 6i·47-s − 9·49-s − 12i·53-s − 9·59-s − 10·61-s + ⋯ |
L(s) = 1 | + 1.51i·7-s + 0.904·11-s − 1.10i·13-s − 1.14·19-s − 1.25i·23-s + 1.67·29-s + 0.898·31-s − 0.328i·37-s − 1.40·41-s − 1.52i·43-s + 0.875i·47-s − 1.28·49-s − 1.64i·53-s − 1.17·59-s − 1.28·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.580075607\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.580075607\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 - 3T + 11T^{2} \) |
| 13 | \( 1 + 4iT - 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 + 5T + 19T^{2} \) |
| 23 | \( 1 + 6iT - 23T^{2} \) |
| 29 | \( 1 - 9T + 29T^{2} \) |
| 31 | \( 1 - 5T + 31T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 + 9T + 41T^{2} \) |
| 43 | \( 1 + 10iT - 43T^{2} \) |
| 47 | \( 1 - 6iT - 47T^{2} \) |
| 53 | \( 1 + 12iT - 53T^{2} \) |
| 59 | \( 1 + 9T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + 2iT - 67T^{2} \) |
| 71 | \( 1 - 3T + 71T^{2} \) |
| 73 | \( 1 + 4iT - 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 - 6iT - 83T^{2} \) |
| 89 | \( 1 - 9T + 89T^{2} \) |
| 97 | \( 1 + 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.014314369223243594461048982039, −6.60597526108958956137347048781, −6.51472452494962458507393716037, −5.64383531484979410889158488991, −4.95059647334067404023635441222, −4.24118536048522755757380064591, −3.16774684067533091896441644117, −2.57730295356432369557971685450, −1.71680167446038212206007107819, −0.39933647876750581816733663898,
1.05487103233014165842616105893, 1.67560496926417688775667522351, 2.94407829053737253396460231590, 3.81109860777580603617551319637, 4.38374202551815685015196066995, 4.85091576748896371807942654703, 6.23906877904912093020757912163, 6.53239127785860156602342407887, 7.16367256370461133833970837946, 7.896991764601046083267678194026