L(s) = 1 | + 4i·7-s + 3·11-s − 4i·13-s − 5·19-s − 6i·23-s + 9·29-s + 5·31-s − 2i·37-s − 9·41-s − 10i·43-s + 6i·47-s − 9·49-s − 12i·53-s − 9·59-s − 10·61-s + ⋯ |
L(s) = 1 | + 1.51i·7-s + 0.904·11-s − 1.10i·13-s − 1.14·19-s − 1.25i·23-s + 1.67·29-s + 0.898·31-s − 0.328i·37-s − 1.40·41-s − 1.52i·43-s + 0.875i·47-s − 1.28·49-s − 1.64i·53-s − 1.17·59-s − 1.28·61-s + ⋯ |
Λ(s)=(=(8100s/2ΓC(s)L(s)(0.447+0.894i)Λ(2−s)
Λ(s)=(=(8100s/2ΓC(s+1/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
8100
= 22⋅34⋅52
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
64.6788 |
Root analytic conductor: |
8.04231 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ8100(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 8100, ( :1/2), 0.447+0.894i)
|
Particular Values
L(1) |
≈ |
1.580075607 |
L(21) |
≈ |
1.580075607 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−4iT−7T2 |
| 11 | 1−3T+11T2 |
| 13 | 1+4iT−13T2 |
| 17 | 1−17T2 |
| 19 | 1+5T+19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1−9T+29T2 |
| 31 | 1−5T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+9T+41T2 |
| 43 | 1+10iT−43T2 |
| 47 | 1−6iT−47T2 |
| 53 | 1+12iT−53T2 |
| 59 | 1+9T+59T2 |
| 61 | 1+10T+61T2 |
| 67 | 1+2iT−67T2 |
| 71 | 1−3T+71T2 |
| 73 | 1+4iT−73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−6iT−83T2 |
| 89 | 1−9T+89T2 |
| 97 | 1+2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.014314369223243594461048982039, −6.60597526108958956137347048781, −6.51472452494962458507393716037, −5.64383531484979410889158488991, −4.95059647334067404023635441222, −4.24118536048522755757380064591, −3.16774684067533091896441644117, −2.57730295356432369557971685450, −1.71680167446038212206007107819, −0.39933647876750581816733663898,
1.05487103233014165842616105893, 1.67560496926417688775667522351, 2.94407829053737253396460231590, 3.81109860777580603617551319637, 4.38374202551815685015196066995, 4.85091576748896371807942654703, 6.23906877904912093020757912163, 6.53239127785860156602342407887, 7.16367256370461133833970837946, 7.896991764601046083267678194026