Properties

Label 2-9075-1.1-c1-0-153
Degree $2$
Conductor $9075$
Sign $1$
Analytic cond. $72.4642$
Root an. cond. $8.51259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.53·2-s + 3-s + 0.369·4-s + 1.53·6-s + 0.290·7-s − 2.51·8-s + 9-s + 0.369·12-s + 6.97·13-s + 0.447·14-s − 4.60·16-s + 4.78·17-s + 1.53·18-s − 7.75·19-s + 0.290·21-s − 4·23-s − 2.51·24-s + 10.7·26-s + 27-s + 0.107·28-s + 7.41·29-s + 6.34·31-s − 2.06·32-s + 7.36·34-s + 0.369·36-s + 3.41·37-s − 11.9·38-s + ⋯
L(s)  = 1  + 1.08·2-s + 0.577·3-s + 0.184·4-s + 0.628·6-s + 0.109·7-s − 0.887·8-s + 0.333·9-s + 0.106·12-s + 1.93·13-s + 0.119·14-s − 1.15·16-s + 1.16·17-s + 0.362·18-s − 1.77·19-s + 0.0634·21-s − 0.834·23-s − 0.512·24-s + 2.10·26-s + 0.192·27-s + 0.0202·28-s + 1.37·29-s + 1.13·31-s − 0.364·32-s + 1.26·34-s + 0.0615·36-s + 0.562·37-s − 1.93·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9075 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9075 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9075\)    =    \(3 \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(72.4642\)
Root analytic conductor: \(8.51259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9075,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.578198094\)
\(L(\frac12)\) \(\approx\) \(4.578198094\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
good2 \( 1 - 1.53T + 2T^{2} \)
7 \( 1 - 0.290T + 7T^{2} \)
13 \( 1 - 6.97T + 13T^{2} \)
17 \( 1 - 4.78T + 17T^{2} \)
19 \( 1 + 7.75T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 7.41T + 29T^{2} \)
31 \( 1 - 6.34T + 31T^{2} \)
37 \( 1 - 3.41T + 37T^{2} \)
41 \( 1 - 7.41T + 41T^{2} \)
43 \( 1 - 0.290T + 43T^{2} \)
47 \( 1 + 5.26T + 47T^{2} \)
53 \( 1 + 5.75T + 53T^{2} \)
59 \( 1 - 3.60T + 59T^{2} \)
61 \( 1 - 6.68T + 61T^{2} \)
67 \( 1 + 6.15T + 67T^{2} \)
71 \( 1 + 5.07T + 71T^{2} \)
73 \( 1 + 1.12T + 73T^{2} \)
79 \( 1 - 0.921T + 79T^{2} \)
83 \( 1 - 1.70T + 83T^{2} \)
89 \( 1 - 4.34T + 89T^{2} \)
97 \( 1 + 4.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.969668280437890692009094287635, −6.72176784957749855626729729711, −6.15729711952447827858920300835, −5.82211335118011540854835073926, −4.63578581259931773563150557616, −4.29159704524203784988612238903, −3.51000449289901905732841120458, −2.96850132261302279008297676182, −1.97671941444564389074796256942, −0.873204115582791448545432409592, 0.873204115582791448545432409592, 1.97671941444564389074796256942, 2.96850132261302279008297676182, 3.51000449289901905732841120458, 4.29159704524203784988612238903, 4.63578581259931773563150557616, 5.82211335118011540854835073926, 6.15729711952447827858920300835, 6.72176784957749855626729729711, 7.969668280437890692009094287635

Graph of the $Z$-function along the critical line