L(s) = 1 | + 1.53·2-s + 3-s + 0.369·4-s + 1.53·6-s + 0.290·7-s − 2.51·8-s + 9-s + 0.369·12-s + 6.97·13-s + 0.447·14-s − 4.60·16-s + 4.78·17-s + 1.53·18-s − 7.75·19-s + 0.290·21-s − 4·23-s − 2.51·24-s + 10.7·26-s + 27-s + 0.107·28-s + 7.41·29-s + 6.34·31-s − 2.06·32-s + 7.36·34-s + 0.369·36-s + 3.41·37-s − 11.9·38-s + ⋯ |
L(s) = 1 | + 1.08·2-s + 0.577·3-s + 0.184·4-s + 0.628·6-s + 0.109·7-s − 0.887·8-s + 0.333·9-s + 0.106·12-s + 1.93·13-s + 0.119·14-s − 1.15·16-s + 1.16·17-s + 0.362·18-s − 1.77·19-s + 0.0634·21-s − 0.834·23-s − 0.512·24-s + 2.10·26-s + 0.192·27-s + 0.0202·28-s + 1.37·29-s + 1.13·31-s − 0.364·32-s + 1.26·34-s + 0.0615·36-s + 0.562·37-s − 1.93·38-s + ⋯ |
Λ(s)=(=(9075s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9075s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.578198094 |
L(21) |
≈ |
4.578198094 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 11 | 1 |
good | 2 | 1−1.53T+2T2 |
| 7 | 1−0.290T+7T2 |
| 13 | 1−6.97T+13T2 |
| 17 | 1−4.78T+17T2 |
| 19 | 1+7.75T+19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1−7.41T+29T2 |
| 31 | 1−6.34T+31T2 |
| 37 | 1−3.41T+37T2 |
| 41 | 1−7.41T+41T2 |
| 43 | 1−0.290T+43T2 |
| 47 | 1+5.26T+47T2 |
| 53 | 1+5.75T+53T2 |
| 59 | 1−3.60T+59T2 |
| 61 | 1−6.68T+61T2 |
| 67 | 1+6.15T+67T2 |
| 71 | 1+5.07T+71T2 |
| 73 | 1+1.12T+73T2 |
| 79 | 1−0.921T+79T2 |
| 83 | 1−1.70T+83T2 |
| 89 | 1−4.34T+89T2 |
| 97 | 1+4.68T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.969668280437890692009094287635, −6.72176784957749855626729729711, −6.15729711952447827858920300835, −5.82211335118011540854835073926, −4.63578581259931773563150557616, −4.29159704524203784988612238903, −3.51000449289901905732841120458, −2.96850132261302279008297676182, −1.97671941444564389074796256942, −0.873204115582791448545432409592,
0.873204115582791448545432409592, 1.97671941444564389074796256942, 2.96850132261302279008297676182, 3.51000449289901905732841120458, 4.29159704524203784988612238903, 4.63578581259931773563150557616, 5.82211335118011540854835073926, 6.15729711952447827858920300835, 6.72176784957749855626729729711, 7.969668280437890692009094287635