Properties

Label 2-9075-1.1-c1-0-122
Degree $2$
Conductor $9075$
Sign $1$
Analytic cond. $72.4642$
Root an. cond. $8.51259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.09·2-s + 3-s − 0.803·4-s − 1.09·6-s − 1.13·7-s + 3.06·8-s + 9-s − 0.803·12-s + 5.16·13-s + 1.24·14-s − 1.74·16-s − 0.942·17-s − 1.09·18-s + 7.90·19-s − 1.13·21-s + 5.10·23-s + 3.06·24-s − 5.64·26-s + 27-s + 0.915·28-s − 4.85·29-s + 4.23·31-s − 4.22·32-s + 1.03·34-s − 0.803·36-s − 0.521·37-s − 8.64·38-s + ⋯
L(s)  = 1  − 0.773·2-s + 0.577·3-s − 0.401·4-s − 0.446·6-s − 0.430·7-s + 1.08·8-s + 0.333·9-s − 0.232·12-s + 1.43·13-s + 0.332·14-s − 0.436·16-s − 0.228·17-s − 0.257·18-s + 1.81·19-s − 0.248·21-s + 1.06·23-s + 0.625·24-s − 1.10·26-s + 0.192·27-s + 0.172·28-s − 0.901·29-s + 0.760·31-s − 0.746·32-s + 0.176·34-s − 0.133·36-s − 0.0858·37-s − 1.40·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9075 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9075 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9075\)    =    \(3 \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(72.4642\)
Root analytic conductor: \(8.51259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9075,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.724954873\)
\(L(\frac12)\) \(\approx\) \(1.724954873\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
good2 \( 1 + 1.09T + 2T^{2} \)
7 \( 1 + 1.13T + 7T^{2} \)
13 \( 1 - 5.16T + 13T^{2} \)
17 \( 1 + 0.942T + 17T^{2} \)
19 \( 1 - 7.90T + 19T^{2} \)
23 \( 1 - 5.10T + 23T^{2} \)
29 \( 1 + 4.85T + 29T^{2} \)
31 \( 1 - 4.23T + 31T^{2} \)
37 \( 1 + 0.521T + 37T^{2} \)
41 \( 1 + 2.73T + 41T^{2} \)
43 \( 1 - 5.85T + 43T^{2} \)
47 \( 1 + 0.302T + 47T^{2} \)
53 \( 1 - 6.82T + 53T^{2} \)
59 \( 1 - 11.3T + 59T^{2} \)
61 \( 1 - 0.831T + 61T^{2} \)
67 \( 1 - 7.05T + 67T^{2} \)
71 \( 1 - 13.5T + 71T^{2} \)
73 \( 1 - 7.65T + 73T^{2} \)
79 \( 1 - 2.24T + 79T^{2} \)
83 \( 1 + 15.3T + 83T^{2} \)
89 \( 1 + 2.73T + 89T^{2} \)
97 \( 1 - 11.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.947096278920367331840610620129, −7.18194894882001376103274312219, −6.65150593161046192904560494948, −5.58863035137106623966157358960, −5.03511979290825271100447542098, −3.95580639537453201141923456488, −3.54006562359454372663432092454, −2.61442776198897631258262146151, −1.41865528958796829654820074672, −0.78796317335720383787200029942, 0.78796317335720383787200029942, 1.41865528958796829654820074672, 2.61442776198897631258262146151, 3.54006562359454372663432092454, 3.95580639537453201141923456488, 5.03511979290825271100447542098, 5.58863035137106623966157358960, 6.65150593161046192904560494948, 7.18194894882001376103274312219, 7.947096278920367331840610620129

Graph of the $Z$-function along the critical line