L(s) = 1 | + 2i·2-s − 4·4-s + (−2 + 11i)5-s + 2i·7-s − 8i·8-s + (−22 − 4i)10-s − 70·11-s + 54i·13-s − 4·14-s + 16·16-s − 22i·17-s − 24·19-s + (8 − 44i)20-s − 140i·22-s + 100i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (−0.178 + 0.983i)5-s + 0.107i·7-s − 0.353i·8-s + (−0.695 − 0.126i)10-s − 1.91·11-s + 1.15i·13-s − 0.0763·14-s + 0.250·16-s − 0.313i·17-s − 0.289·19-s + (0.0894 − 0.491i)20-s − 1.35i·22-s + 0.906i·23-s + ⋯ |
Λ(s)=(=(90s/2ΓC(s)L(s)(−0.983−0.178i)Λ(4−s)
Λ(s)=(=(90s/2ΓC(s+3/2)L(s)(−0.983−0.178i)Λ(1−s)
Degree: |
2 |
Conductor: |
90
= 2⋅32⋅5
|
Sign: |
−0.983−0.178i
|
Analytic conductor: |
5.31017 |
Root analytic conductor: |
2.30438 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ90(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 90, ( :3/2), −0.983−0.178i)
|
Particular Values
L(2) |
≈ |
0.0798739+0.885815i |
L(21) |
≈ |
0.0798739+0.885815i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 3 | 1 |
| 5 | 1+(2−11i)T |
good | 7 | 1−2iT−343T2 |
| 11 | 1+70T+1.33e3T2 |
| 13 | 1−54iT−2.19e3T2 |
| 17 | 1+22iT−4.91e3T2 |
| 19 | 1+24T+6.85e3T2 |
| 23 | 1−100iT−1.21e4T2 |
| 29 | 1−216T+2.43e4T2 |
| 31 | 1−208T+2.97e4T2 |
| 37 | 1−254iT−5.06e4T2 |
| 41 | 1−206T+6.89e4T2 |
| 43 | 1−292iT−7.95e4T2 |
| 47 | 1+320iT−1.03e5T2 |
| 53 | 1−402iT−1.48e5T2 |
| 59 | 1+370T+2.05e5T2 |
| 61 | 1+550T+2.26e5T2 |
| 67 | 1+728iT−3.00e5T2 |
| 71 | 1−540T+3.57e5T2 |
| 73 | 1−604iT−3.89e5T2 |
| 79 | 1+792T+4.93e5T2 |
| 83 | 1+404iT−5.71e5T2 |
| 89 | 1+938T+7.04e5T2 |
| 97 | 1+56iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.10781147973330493133395981977, −13.44013595304228410489311100526, −11.99168109912117979018073388800, −10.76332721886548661014504211752, −9.778562641608067821768298416545, −8.250181407692054391244660353010, −7.28779139547374256604122749654, −6.14531695116063254432991272069, −4.67076659534695145022232315746, −2.79227728644389770554895895844,
0.51702683540305336395139394427, 2.68573485585703268549144005533, 4.52716288594949031469371517418, 5.61540191644989400971545842340, 7.83827582872334273059172737378, 8.578051630475317594238774977570, 10.10642314008639750098482114518, 10.78724315461149715897162670577, 12.35502594416933827554039524549, 12.83794671659031800713798951246