| L(s) = 1 | + (1 − i)2-s − 2i·4-s + (3 + 4i)5-s + (8 − 8i)7-s + (−2 − 2i)8-s + (7 + i)10-s − 4·11-s + (−3 − 3i)13-s − 16i·14-s − 4·16-s + (−19 + 19i)17-s + 8i·19-s + (8 − 6i)20-s + (−4 + 4i)22-s + (20 + 20i)23-s + ⋯ |
| L(s) = 1 | + (0.5 − 0.5i)2-s − 0.5i·4-s + (0.600 + 0.800i)5-s + (1.14 − 1.14i)7-s + (−0.250 − 0.250i)8-s + (0.700 + 0.100i)10-s − 0.363·11-s + (−0.230 − 0.230i)13-s − 1.14i·14-s − 0.250·16-s + (−1.11 + 1.11i)17-s + 0.421i·19-s + (0.400 − 0.300i)20-s + (−0.181 + 0.181i)22-s + (0.869 + 0.869i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.767 + 0.640i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.767 + 0.640i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(1.73252 - 0.627978i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.73252 - 0.627978i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1 + i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-3 - 4i)T \) |
| good | 7 | \( 1 + (-8 + 8i)T - 49iT^{2} \) |
| 11 | \( 1 + 4T + 121T^{2} \) |
| 13 | \( 1 + (3 + 3i)T + 169iT^{2} \) |
| 17 | \( 1 + (19 - 19i)T - 289iT^{2} \) |
| 19 | \( 1 - 8iT - 361T^{2} \) |
| 23 | \( 1 + (-20 - 20i)T + 529iT^{2} \) |
| 29 | \( 1 + 38iT - 841T^{2} \) |
| 31 | \( 1 + 44T + 961T^{2} \) |
| 37 | \( 1 + (3 - 3i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 70T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-36 - 36i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 - 2.20e3iT^{2} \) |
| 53 | \( 1 + (17 + 17i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 92iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 72T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-44 + 44i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 88T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-55 - 55i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 12iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-24 - 24i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 26iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (57 - 57i)T - 9.40e3iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.71462172595389698386510033502, −12.94633890994636546402095128105, −11.23881236266706286156187677290, −10.81907659011399430574968761461, −9.752002988786092542843397553355, −7.986747517728860552229865650803, −6.73231911598271029206748655992, −5.23742088478129338331876892094, −3.79411676590324652133929518839, −1.90007058324373184107056649676,
2.29470844174315848453011874901, 4.81756719324260560081254253982, 5.38090472814699909208613571862, 7.00050538449587226768249018330, 8.569935515762549845422525506963, 9.112987347504254366248898166486, 11.00036747124215757976324621525, 12.08521945752718196173176159383, 12.99268275993724894539496173295, 14.04069499655929341045975085706