L(s) = 1 | + (2 + 2i)2-s + 8i·4-s + (15 − 20i)5-s + (29 + 29i)7-s + (−16 + 16i)8-s + (70 − 10i)10-s + 118·11-s + (69 − 69i)13-s + 116i·14-s − 64·16-s + (271 + 271i)17-s + 280i·19-s + (160 + 120i)20-s + (236 + 236i)22-s + (−269 + 269i)23-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + 0.5i·4-s + (0.599 − 0.800i)5-s + (0.591 + 0.591i)7-s + (−0.250 + 0.250i)8-s + (0.700 − 0.100i)10-s + 0.975·11-s + (0.408 − 0.408i)13-s + 0.591i·14-s − 0.250·16-s + (0.937 + 0.937i)17-s + 0.775i·19-s + (0.400 + 0.299i)20-s + (0.487 + 0.487i)22-s + (−0.508 + 0.508i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.767 - 0.640i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.767 - 0.640i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(2.47486 + 0.897050i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.47486 + 0.897050i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2 - 2i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-15 + 20i)T \) |
good | 7 | \( 1 + (-29 - 29i)T + 2.40e3iT^{2} \) |
| 11 | \( 1 - 118T + 1.46e4T^{2} \) |
| 13 | \( 1 + (-69 + 69i)T - 2.85e4iT^{2} \) |
| 17 | \( 1 + (-271 - 271i)T + 8.35e4iT^{2} \) |
| 19 | \( 1 - 280iT - 1.30e5T^{2} \) |
| 23 | \( 1 + (269 - 269i)T - 2.79e5iT^{2} \) |
| 29 | \( 1 + 680iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 202T + 9.23e5T^{2} \) |
| 37 | \( 1 + (651 + 651i)T + 1.87e6iT^{2} \) |
| 41 | \( 1 + 1.68e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + (-1.08e3 + 1.08e3i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + (1.26e3 + 1.26e3i)T + 4.87e6iT^{2} \) |
| 53 | \( 1 + (-611 + 611i)T - 7.89e6iT^{2} \) |
| 59 | \( 1 + 1.16e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 5.59e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (751 + 751i)T + 2.01e7iT^{2} \) |
| 71 | \( 1 + 6.44e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (2.95e3 - 2.95e3i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 - 1.05e4iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (-6.23e3 + 6.23e3i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 - 1.44e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (7.31e3 + 7.31e3i)T + 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.62295191399786828515165909406, −12.46443309070672284384089088869, −11.77503048904604526139005289835, −10.10351302859064704004317790970, −8.817480844959391405457780138397, −7.962290289517303540004830603790, −6.16885985235360250074070289607, −5.36560852041703398020676639355, −3.86638745644093820512550840953, −1.64183786469500758518503405493,
1.43673412339740751397714452451, 3.15776061458109516474282197797, 4.65342879064662208317934131367, 6.19485264190331227415684128970, 7.29569000275293486788477076260, 9.100787338737262232997105266530, 10.22164564417411389095421472431, 11.16816482534336306931737782772, 12.03636380871631201522049746104, 13.55375733280712403481734816842