L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.866 − 1.5i)3-s + (0.499 − 0.866i)4-s + (−1.23 − 1.86i)5-s + 1.73i·6-s + (0.866 − 0.5i)7-s + 0.999i·8-s + (−1.5 − 2.59i)9-s + (2 + i)10-s + (1 + 1.73i)11-s + (−0.866 − 1.49i)12-s + (5.19 + 3i)13-s + (−0.499 + 0.866i)14-s + (−3.86 + 0.232i)15-s + (−0.5 − 0.866i)16-s + 2i·17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.499 − 0.866i)3-s + (0.249 − 0.433i)4-s + (−0.550 − 0.834i)5-s + 0.707i·6-s + (0.327 − 0.188i)7-s + 0.353i·8-s + (−0.5 − 0.866i)9-s + (0.632 + 0.316i)10-s + (0.301 + 0.522i)11-s + (−0.250 − 0.433i)12-s + (1.44 + 0.832i)13-s + (−0.133 + 0.231i)14-s + (−0.998 + 0.0599i)15-s + (−0.125 − 0.216i)16-s + 0.485i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.687 + 0.726i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.687 + 0.726i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.763323 - 0.328462i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.763323 - 0.328462i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.866 + 1.5i)T \) |
| 5 | \( 1 + (1.23 + 1.86i)T \) |
good | 7 | \( 1 + (-0.866 + 0.5i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-5.19 - 3i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 2iT - 17T^{2} \) |
| 19 | \( 1 + 6T + 19T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.5 - 7.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 + (-5.5 + 9.52i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.46 - 2i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.06 + 3.5i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 - 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (9.52 + 5.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + 4iT - 73T^{2} \) |
| 79 | \( 1 + (6 + 10.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (9.52 - 5.5i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + T + 89T^{2} \) |
| 97 | \( 1 + (-6.92 + 4i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.03304208730811811662035362915, −12.90677665677312781423702998977, −11.95936603095552567149508950768, −10.76900444268447423359818747116, −8.940727242928583719450310667647, −8.546790256148184901921862613776, −7.33029502415470965408880901826, −6.17352473400229918546252539018, −4.15060236543285869177240127652, −1.54104431390116796810643042806,
2.87024766510310283335615375952, 4.11216164284346614745955484892, 6.21852382937063131289599362212, 8.008583585967385544526659953745, 8.616745062734813337349643340521, 10.05818310010461342315650110470, 10.91337465933609946043284249238, 11.60145159369364902755904963406, 13.31183538077948618598208038245, 14.43800165552648640151433808510