| L(s) = 1 | + (2.91 − 0.781i)3-s + (0.745 + 0.199i)5-s + (2.51 − 0.830i)7-s + (5.28 − 3.05i)9-s + (−0.333 − 1.24i)11-s + (0.919 + 0.919i)13-s + 2.32·15-s + (−3.95 + 6.85i)17-s + (0.478 − 1.78i)19-s + (6.67 − 4.38i)21-s + (−3.33 + 1.92i)23-s + (−3.81 − 2.20i)25-s + (6.63 − 6.63i)27-s + (−5.25 − 5.25i)29-s + (−2.44 + 4.23i)31-s + ⋯ |
| L(s) = 1 | + (1.68 − 0.450i)3-s + (0.333 + 0.0893i)5-s + (0.949 − 0.313i)7-s + (1.76 − 1.01i)9-s + (−0.100 − 0.374i)11-s + (0.254 + 0.254i)13-s + 0.601·15-s + (−0.959 + 1.66i)17-s + (0.109 − 0.409i)19-s + (1.45 − 0.956i)21-s + (−0.694 + 0.401i)23-s + (−0.762 − 0.440i)25-s + (1.27 − 1.27i)27-s + (−0.975 − 0.975i)29-s + (−0.439 + 0.761i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.889 + 0.456i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.889 + 0.456i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.03427 - 0.732428i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.03427 - 0.732428i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (-2.51 + 0.830i)T \) |
| good | 3 | \( 1 + (-2.91 + 0.781i)T + (2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (-0.745 - 0.199i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (0.333 + 1.24i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (-0.919 - 0.919i)T + 13iT^{2} \) |
| 17 | \( 1 + (3.95 - 6.85i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.478 + 1.78i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (3.33 - 1.92i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.25 + 5.25i)T + 29iT^{2} \) |
| 31 | \( 1 + (2.44 - 4.23i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.28 - 0.343i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 2.84iT - 41T^{2} \) |
| 43 | \( 1 + (-0.585 + 0.585i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.86 - 4.95i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.54 + 9.51i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-2.39 - 8.93i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.71 + 6.38i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-5.94 + 1.59i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 1.99iT - 71T^{2} \) |
| 73 | \( 1 + (6.69 + 3.86i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.63 - 8.02i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.78 + 4.78i)T + 83iT^{2} \) |
| 89 | \( 1 + (1.84 - 1.06i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 9.01T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.855531779683679155191110467543, −9.006386429647748110948811518320, −8.272970362839509547372000580545, −7.85101359150701670283570928910, −6.84664729127308745735745374960, −5.84427600560926007041687541185, −4.31460356709420207688898051621, −3.64680571009570608316938062994, −2.27195428461779461663862730462, −1.62713997769893765840448341625,
1.84999637659877433000244447293, 2.56237385318492432666698216985, 3.77807970583799908888412074432, 4.65969334636958412272390405023, 5.61262439383639315203213781495, 7.19800050229829702969737737026, 7.76769056254917168706572306823, 8.655771918395801722828964862055, 9.229337755314025904229347041889, 9.861398725765448874528850645858