L(s) = 1 | + (2.51 − 0.672i)3-s + (2.91 + 0.780i)5-s + (−1.41 + 2.23i)7-s + (3.25 − 1.87i)9-s + (0.838 + 3.12i)11-s + (−2.52 − 2.52i)13-s + 7.83·15-s + (0.201 − 0.348i)17-s + (−0.373 + 1.39i)19-s + (−2.06 + 6.56i)21-s + (7.89 − 4.55i)23-s + (3.54 + 2.04i)25-s + (1.39 − 1.39i)27-s + (−1.47 − 1.47i)29-s + (−2.12 + 3.68i)31-s + ⋯ |
L(s) = 1 | + (1.44 − 0.388i)3-s + (1.30 + 0.348i)5-s + (−0.536 + 0.843i)7-s + (1.08 − 0.626i)9-s + (0.252 + 0.943i)11-s + (−0.699 − 0.699i)13-s + 2.02·15-s + (0.0487 − 0.0844i)17-s + (−0.0855 + 0.319i)19-s + (−0.449 + 1.43i)21-s + (1.64 − 0.949i)23-s + (0.708 + 0.408i)25-s + (0.267 − 0.267i)27-s + (−0.273 − 0.273i)29-s + (−0.381 + 0.661i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 - 0.198i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.980 - 0.198i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.94536 + 0.295836i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.94536 + 0.295836i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (1.41 - 2.23i)T \) |
good | 3 | \( 1 + (-2.51 + 0.672i)T + (2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (-2.91 - 0.780i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (-0.838 - 3.12i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (2.52 + 2.52i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.201 + 0.348i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.373 - 1.39i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-7.89 + 4.55i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.47 + 1.47i)T + 29iT^{2} \) |
| 31 | \( 1 + (2.12 - 3.68i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.94 + 0.520i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 8.96iT - 41T^{2} \) |
| 43 | \( 1 + (0.997 - 0.997i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.09 - 3.63i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.488 + 1.82i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (0.636 + 2.37i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-0.685 + 2.55i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (11.6 - 3.12i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 0.451iT - 71T^{2} \) |
| 73 | \( 1 + (9.40 + 5.43i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.31 + 10.9i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.742 - 0.742i)T + 83iT^{2} \) |
| 89 | \( 1 + (-11.1 + 6.41i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 13.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.931612846988528131000755294574, −9.141729460782941525557499036316, −8.796512908403267941439744752575, −7.54669067749940971709676062161, −6.88507607090797749132269577733, −5.90592744357771104263537155049, −4.89284817799676026826024665873, −3.27658050387748455512939661286, −2.54495766583449712939187975000, −1.83930601649694296795814905975,
1.43816478440978253822298181570, 2.69088386488608841748986688830, 3.51224460466881001548678345168, 4.59011484293467530951595716741, 5.71445266307502359226894551496, 6.79137002690731932204695247147, 7.61233115376319071773368460599, 8.779550224545904794099233918914, 9.267691473449180235558250926305, 9.750553988362867388190252909319