L(s) = 1 | + (−0.831 + 0.222i)3-s + (2.02 + 0.543i)5-s + (−2.63 − 0.233i)7-s + (−1.95 + 1.12i)9-s + (−1.03 − 3.85i)11-s + (0.990 + 0.990i)13-s − 1.80·15-s + (3.07 − 5.33i)17-s + (1.01 − 3.79i)19-s + (2.24 − 0.393i)21-s + (5.91 − 3.41i)23-s + (−0.514 − 0.297i)25-s + (3.20 − 3.20i)27-s + (3.83 + 3.83i)29-s + (−2.05 + 3.55i)31-s + ⋯ |
L(s) = 1 | + (−0.480 + 0.128i)3-s + (0.906 + 0.242i)5-s + (−0.996 − 0.0881i)7-s + (−0.652 + 0.376i)9-s + (−0.311 − 1.16i)11-s + (0.274 + 0.274i)13-s − 0.466·15-s + (0.746 − 1.29i)17-s + (0.233 − 0.870i)19-s + (0.489 − 0.0858i)21-s + (1.23 − 0.712i)23-s + (−0.102 − 0.0594i)25-s + (0.616 − 0.616i)27-s + (0.712 + 0.712i)29-s + (−0.368 + 0.638i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.508 + 0.861i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.508 + 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.995535 - 0.568472i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.995535 - 0.568472i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (2.63 + 0.233i)T \) |
good | 3 | \( 1 + (0.831 - 0.222i)T + (2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (-2.02 - 0.543i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (1.03 + 3.85i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (-0.990 - 0.990i)T + 13iT^{2} \) |
| 17 | \( 1 + (-3.07 + 5.33i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.01 + 3.79i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-5.91 + 3.41i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.83 - 3.83i)T + 29iT^{2} \) |
| 31 | \( 1 + (2.05 - 3.55i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.0740 + 0.0198i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 8.68iT - 41T^{2} \) |
| 43 | \( 1 + (0.713 - 0.713i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.95 - 3.38i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.89 + 7.06i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-0.851 - 3.17i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-2.37 + 8.84i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-1.49 + 0.401i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 2.86iT - 71T^{2} \) |
| 73 | \( 1 + (-8.95 - 5.17i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.33 + 5.77i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (10.2 + 10.2i)T + 83iT^{2} \) |
| 89 | \( 1 + (1.16 - 0.671i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 18.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05341366996867625117404604493, −9.178616231473534114980461336502, −8.542817011859067650720323312706, −7.15888706168767916914989735411, −6.44416381408731965002213205308, −5.60648128647663751895326509757, −4.98493798504033280324534115748, −3.26038351146020815526407740359, −2.64199936394066732487213648262, −0.61981706900594756336997095353,
1.35514533493797597158188556884, 2.75849002443592218335710202919, 3.87440946929478191305084505654, 5.33573486036866213191395295166, 5.87447106190011532965135312817, 6.58486368088996676911497999329, 7.66427574834065421339563578884, 8.696222918544608033920284348194, 9.736096095852675838949489706418, 9.955821181080772076759509891804