Properties

Label 2-8910-1.1-c1-0-142
Degree $2$
Conductor $8910$
Sign $-1$
Analytic cond. $71.1467$
Root an. cond. $8.43485$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 1.20·7-s + 8-s − 10-s + 11-s − 2.15·13-s + 1.20·14-s + 16-s − 1.04·17-s − 2.04·19-s − 20-s + 22-s − 1.95·23-s + 25-s − 2.15·26-s + 1.20·28-s − 7.65·29-s + 4.20·31-s + 32-s − 1.04·34-s − 1.20·35-s + 8.49·37-s − 2.04·38-s − 40-s − 6.24·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.447·5-s + 0.454·7-s + 0.353·8-s − 0.316·10-s + 0.301·11-s − 0.597·13-s + 0.321·14-s + 0.250·16-s − 0.254·17-s − 0.469·19-s − 0.223·20-s + 0.213·22-s − 0.407·23-s + 0.200·25-s − 0.422·26-s + 0.227·28-s − 1.42·29-s + 0.754·31-s + 0.176·32-s − 0.179·34-s − 0.203·35-s + 1.39·37-s − 0.332·38-s − 0.158·40-s − 0.975·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8910\)    =    \(2 \cdot 3^{4} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(71.1467\)
Root analytic conductor: \(8.43485\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8910,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
good7 \( 1 - 1.20T + 7T^{2} \)
13 \( 1 + 2.15T + 13T^{2} \)
17 \( 1 + 1.04T + 17T^{2} \)
19 \( 1 + 2.04T + 19T^{2} \)
23 \( 1 + 1.95T + 23T^{2} \)
29 \( 1 + 7.65T + 29T^{2} \)
31 \( 1 - 4.20T + 31T^{2} \)
37 \( 1 - 8.49T + 37T^{2} \)
41 \( 1 + 6.24T + 41T^{2} \)
43 \( 1 + 8.29T + 43T^{2} \)
47 \( 1 - 4.04T + 47T^{2} \)
53 \( 1 + 4.15T + 53T^{2} \)
59 \( 1 + 11.2T + 59T^{2} \)
61 \( 1 + 5.65T + 61T^{2} \)
67 \( 1 + 9.45T + 67T^{2} \)
71 \( 1 - 13.7T + 71T^{2} \)
73 \( 1 + 13.3T + 73T^{2} \)
79 \( 1 - 9.54T + 79T^{2} \)
83 \( 1 - 5.55T + 83T^{2} \)
89 \( 1 - 7.65T + 89T^{2} \)
97 \( 1 - 15.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51844676688645448208064550531, −6.53339424932760005647593227381, −6.12839611693970925324147035948, −5.10482530455309238692425913172, −4.64961602116588401167709314080, −3.93909719690796558534135756456, −3.19000925855323457943119600477, −2.27853235096089070592984063135, −1.45785899976218745517282714953, 0, 1.45785899976218745517282714953, 2.27853235096089070592984063135, 3.19000925855323457943119600477, 3.93909719690796558534135756456, 4.64961602116588401167709314080, 5.10482530455309238692425913172, 6.12839611693970925324147035948, 6.53339424932760005647593227381, 7.51844676688645448208064550531

Graph of the $Z$-function along the critical line