Properties

Label 2-8910-1.1-c1-0-127
Degree $2$
Conductor $8910$
Sign $-1$
Analytic cond. $71.1467$
Root an. cond. $8.43485$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s + 3.09·7-s − 8-s + 10-s + 11-s − 2.45·13-s − 3.09·14-s + 16-s + 6.46·17-s + 3.73·19-s − 20-s − 22-s − 6.12·23-s + 25-s + 2.45·26-s + 3.09·28-s − 4.09·29-s − 0.00993·31-s − 32-s − 6.46·34-s − 3.09·35-s − 0.846·37-s − 3.73·38-s + 40-s − 5.69·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.447·5-s + 1.17·7-s − 0.353·8-s + 0.316·10-s + 0.301·11-s − 0.680·13-s − 0.827·14-s + 0.250·16-s + 1.56·17-s + 0.856·19-s − 0.223·20-s − 0.213·22-s − 1.27·23-s + 0.200·25-s + 0.481·26-s + 0.585·28-s − 0.760·29-s − 0.00178·31-s − 0.176·32-s − 1.10·34-s − 0.523·35-s − 0.139·37-s − 0.605·38-s + 0.158·40-s − 0.889·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8910\)    =    \(2 \cdot 3^{4} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(71.1467\)
Root analytic conductor: \(8.43485\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8910,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
good7 \( 1 - 3.09T + 7T^{2} \)
13 \( 1 + 2.45T + 13T^{2} \)
17 \( 1 - 6.46T + 17T^{2} \)
19 \( 1 - 3.73T + 19T^{2} \)
23 \( 1 + 6.12T + 23T^{2} \)
29 \( 1 + 4.09T + 29T^{2} \)
31 \( 1 + 0.00993T + 31T^{2} \)
37 \( 1 + 0.846T + 37T^{2} \)
41 \( 1 + 5.69T + 41T^{2} \)
43 \( 1 + 11.5T + 43T^{2} \)
47 \( 1 + 0.781T + 47T^{2} \)
53 \( 1 + 11.4T + 53T^{2} \)
59 \( 1 + 3.60T + 59T^{2} \)
61 \( 1 - 3.78T + 61T^{2} \)
67 \( 1 - 4.66T + 67T^{2} \)
71 \( 1 + 12.5T + 71T^{2} \)
73 \( 1 + 7.94T + 73T^{2} \)
79 \( 1 - 7.21T + 79T^{2} \)
83 \( 1 + 2.23T + 83T^{2} \)
89 \( 1 + 8.33T + 89T^{2} \)
97 \( 1 - 9.11T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65012024477468867549269592670, −7.00583996343374536123453778084, −6.06052326219543042603472534863, −5.29899801174485232283244286489, −4.73945844660769079851895105676, −3.71663088331128769496260909929, −3.06061911489754762851407604813, −1.86763974838319069068878613409, −1.30832889026459777698731407741, 0, 1.30832889026459777698731407741, 1.86763974838319069068878613409, 3.06061911489754762851407604813, 3.71663088331128769496260909929, 4.73945844660769079851895105676, 5.29899801174485232283244286489, 6.06052326219543042603472534863, 7.00583996343374536123453778084, 7.65012024477468867549269592670

Graph of the $Z$-function along the critical line