Properties

Label 2-8910-1.1-c1-0-106
Degree $2$
Conductor $8910$
Sign $-1$
Analytic cond. $71.1467$
Root an. cond. $8.43485$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s + 0.942·7-s − 8-s + 10-s + 11-s + 0.239·13-s − 0.942·14-s + 16-s + 1.94·17-s − 5.66·19-s − 20-s − 22-s + 0.578·23-s + 25-s − 0.239·26-s + 0.942·28-s + 4.60·29-s − 5.46·31-s − 32-s − 1.94·34-s − 0.942·35-s − 8.54·37-s + 5.66·38-s + 40-s + 8.70·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.447·5-s + 0.356·7-s − 0.353·8-s + 0.316·10-s + 0.301·11-s + 0.0663·13-s − 0.251·14-s + 0.250·16-s + 0.471·17-s − 1.29·19-s − 0.223·20-s − 0.213·22-s + 0.120·23-s + 0.200·25-s − 0.0468·26-s + 0.178·28-s + 0.854·29-s − 0.981·31-s − 0.176·32-s − 0.333·34-s − 0.159·35-s − 1.40·37-s + 0.918·38-s + 0.158·40-s + 1.35·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8910\)    =    \(2 \cdot 3^{4} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(71.1467\)
Root analytic conductor: \(8.43485\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8910,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
good7 \( 1 - 0.942T + 7T^{2} \)
13 \( 1 - 0.239T + 13T^{2} \)
17 \( 1 - 1.94T + 17T^{2} \)
19 \( 1 + 5.66T + 19T^{2} \)
23 \( 1 - 0.578T + 23T^{2} \)
29 \( 1 - 4.60T + 29T^{2} \)
31 \( 1 + 5.46T + 31T^{2} \)
37 \( 1 + 8.54T + 37T^{2} \)
41 \( 1 - 8.70T + 41T^{2} \)
43 \( 1 - 7.08T + 43T^{2} \)
47 \( 1 + 4.64T + 47T^{2} \)
53 \( 1 - 4.70T + 53T^{2} \)
59 \( 1 - 6.18T + 59T^{2} \)
61 \( 1 + 2.28T + 61T^{2} \)
67 \( 1 + 9.12T + 67T^{2} \)
71 \( 1 + 9.77T + 71T^{2} \)
73 \( 1 + 14.7T + 73T^{2} \)
79 \( 1 - 17.2T + 79T^{2} \)
83 \( 1 - 9.08T + 83T^{2} \)
89 \( 1 + 6.24T + 89T^{2} \)
97 \( 1 - 2.58T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.54388464768119340224008708046, −6.84524174060554971424721694392, −6.19596156890059037953175712850, −5.41775647723627944463362819343, −4.52469985833939841038205357825, −3.84660142829960184861932242791, −2.95891906392826360277653085352, −2.04206012126735740152020784735, −1.16128951797308356870347745942, 0, 1.16128951797308356870347745942, 2.04206012126735740152020784735, 2.95891906392826360277653085352, 3.84660142829960184861932242791, 4.52469985833939841038205357825, 5.41775647723627944463362819343, 6.19596156890059037953175712850, 6.84524174060554971424721694392, 7.54388464768119340224008708046

Graph of the $Z$-function along the critical line