Properties

Label 2-8910-1.1-c1-0-105
Degree $2$
Conductor $8910$
Sign $1$
Analytic cond. $71.1467$
Root an. cond. $8.43485$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 4.50·7-s + 8-s − 10-s + 11-s + 5.98·13-s + 4.50·14-s + 16-s + 7.21·17-s + 0.192·19-s − 20-s + 22-s − 5.75·23-s + 25-s + 5.98·26-s + 4.50·28-s + 7.58·29-s − 3.94·31-s + 32-s + 7.21·34-s − 4.50·35-s − 0.955·37-s + 0.192·38-s − 40-s − 1.76·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.447·5-s + 1.70·7-s + 0.353·8-s − 0.316·10-s + 0.301·11-s + 1.66·13-s + 1.20·14-s + 0.250·16-s + 1.75·17-s + 0.0442·19-s − 0.223·20-s + 0.213·22-s − 1.19·23-s + 0.200·25-s + 1.17·26-s + 0.850·28-s + 1.40·29-s − 0.708·31-s + 0.176·32-s + 1.23·34-s − 0.760·35-s − 0.157·37-s + 0.0313·38-s − 0.158·40-s − 0.275·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8910\)    =    \(2 \cdot 3^{4} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(71.1467\)
Root analytic conductor: \(8.43485\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8910,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.878703617\)
\(L(\frac12)\) \(\approx\) \(4.878703617\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
good7 \( 1 - 4.50T + 7T^{2} \)
13 \( 1 - 5.98T + 13T^{2} \)
17 \( 1 - 7.21T + 17T^{2} \)
19 \( 1 - 0.192T + 19T^{2} \)
23 \( 1 + 5.75T + 23T^{2} \)
29 \( 1 - 7.58T + 29T^{2} \)
31 \( 1 + 3.94T + 31T^{2} \)
37 \( 1 + 0.955T + 37T^{2} \)
41 \( 1 + 1.76T + 41T^{2} \)
43 \( 1 - 5.98T + 43T^{2} \)
47 \( 1 - 7.43T + 47T^{2} \)
53 \( 1 + 9.80T + 53T^{2} \)
59 \( 1 - 6.93T + 59T^{2} \)
61 \( 1 + 5.70T + 61T^{2} \)
67 \( 1 + 4.98T + 67T^{2} \)
71 \( 1 + 12.9T + 71T^{2} \)
73 \( 1 - 7.47T + 73T^{2} \)
79 \( 1 - 8.22T + 79T^{2} \)
83 \( 1 + 13.5T + 83T^{2} \)
89 \( 1 + 11.9T + 89T^{2} \)
97 \( 1 + 12.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80895931307148170715046996905, −7.13924560405986800517849350393, −6.11208026319532898378090227339, −5.68096320736374279425321461459, −4.93299059804238003756672029414, −4.15234236078917859608101924216, −3.72083152135303852539268756779, −2.78108519165974971362356708691, −1.58601457419981511670750033247, −1.12779152168315124966084088594, 1.12779152168315124966084088594, 1.58601457419981511670750033247, 2.78108519165974971362356708691, 3.72083152135303852539268756779, 4.15234236078917859608101924216, 4.93299059804238003756672029414, 5.68096320736374279425321461459, 6.11208026319532898378090227339, 7.13924560405986800517849350393, 7.80895931307148170715046996905

Graph of the $Z$-function along the critical line