L(s) = 1 | + 3·3-s − 5-s + 6·9-s − 6·13-s − 3·15-s + 4·17-s − 6·19-s − 3·23-s − 4·25-s + 9·27-s − 4·29-s + 9·31-s − 7·37-s − 18·39-s + 2·41-s − 6·43-s − 6·45-s − 12·47-s − 7·49-s + 12·51-s − 2·53-s − 18·57-s + 9·59-s + 8·61-s + 6·65-s − 15·67-s − 9·69-s + ⋯ |
L(s) = 1 | + 1.73·3-s − 0.447·5-s + 2·9-s − 1.66·13-s − 0.774·15-s + 0.970·17-s − 1.37·19-s − 0.625·23-s − 4/5·25-s + 1.73·27-s − 0.742·29-s + 1.61·31-s − 1.15·37-s − 2.88·39-s + 0.312·41-s − 0.914·43-s − 0.894·45-s − 1.75·47-s − 49-s + 1.68·51-s − 0.274·53-s − 2.38·57-s + 1.17·59-s + 1.02·61-s + 0.744·65-s − 1.83·67-s − 1.08·69-s + ⋯ |
Λ(s)=(=(7744s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7744s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1−pT+pT2 |
| 5 | 1+T+pT2 |
| 7 | 1+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1+3T+pT2 |
| 29 | 1+4T+pT2 |
| 31 | 1−9T+pT2 |
| 37 | 1+7T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1+12T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1−9T+pT2 |
| 61 | 1−8T+pT2 |
| 67 | 1+15T+pT2 |
| 71 | 1−3T+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1+6T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1+5T+pT2 |
| 97 | 1+3T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.77504752207978386728366476611, −7.08072343183803009576323277610, −6.37305639235248964419573519168, −5.18502090217935779773115652171, −4.46713554310869373480031428571, −3.77327816150142389344477767412, −3.09410655009033832646896370919, −2.32539615240176503621700363929, −1.67933822551948351378331307814, 0,
1.67933822551948351378331307814, 2.32539615240176503621700363929, 3.09410655009033832646896370919, 3.77327816150142389344477767412, 4.46713554310869373480031428571, 5.18502090217935779773115652171, 6.37305639235248964419573519168, 7.08072343183803009576323277610, 7.77504752207978386728366476611