Properties

Label 2-88e2-1.1-c1-0-197
Degree $2$
Conductor $7744$
Sign $-1$
Analytic cond. $61.8361$
Root an. cond. $7.86359$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s + 6·9-s − 6·13-s − 3·15-s + 4·17-s − 6·19-s − 3·23-s − 4·25-s + 9·27-s − 4·29-s + 9·31-s − 7·37-s − 18·39-s + 2·41-s − 6·43-s − 6·45-s − 12·47-s − 7·49-s + 12·51-s − 2·53-s − 18·57-s + 9·59-s + 8·61-s + 6·65-s − 15·67-s − 9·69-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s + 2·9-s − 1.66·13-s − 0.774·15-s + 0.970·17-s − 1.37·19-s − 0.625·23-s − 4/5·25-s + 1.73·27-s − 0.742·29-s + 1.61·31-s − 1.15·37-s − 2.88·39-s + 0.312·41-s − 0.914·43-s − 0.894·45-s − 1.75·47-s − 49-s + 1.68·51-s − 0.274·53-s − 2.38·57-s + 1.17·59-s + 1.02·61-s + 0.744·65-s − 1.83·67-s − 1.08·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7744\)    =    \(2^{6} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(61.8361\)
Root analytic conductor: \(7.86359\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7744,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 - p T + p T^{2} \)
5 \( 1 + T + p T^{2} \)
7 \( 1 + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 9 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 15 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 5 T + p T^{2} \)
97 \( 1 + 3 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77504752207978386728366476611, −7.08072343183803009576323277610, −6.37305639235248964419573519168, −5.18502090217935779773115652171, −4.46713554310869373480031428571, −3.77327816150142389344477767412, −3.09410655009033832646896370919, −2.32539615240176503621700363929, −1.67933822551948351378331307814, 0, 1.67933822551948351378331307814, 2.32539615240176503621700363929, 3.09410655009033832646896370919, 3.77327816150142389344477767412, 4.46713554310869373480031428571, 5.18502090217935779773115652171, 6.37305639235248964419573519168, 7.08072343183803009576323277610, 7.77504752207978386728366476611

Graph of the $Z$-function along the critical line