L(s) = 1 | + (0.595 − 1.62i)3-s + (0.892 + 3.33i)5-s + (−1.99 + 3.44i)7-s + (−2.29 − 1.93i)9-s − 3.36·11-s + (2.63 − 0.707i)13-s + (5.95 + 0.532i)15-s + (−0.777 − 0.208i)17-s + (−7.12 + 1.90i)19-s + (4.42 + 5.29i)21-s + (−1.05 + 1.05i)23-s + (−5.97 + 3.44i)25-s + (−4.51 + 2.57i)27-s + (−4.97 − 4.97i)29-s + (−6.17 + 6.17i)31-s + ⋯ |
L(s) = 1 | + (0.343 − 0.939i)3-s + (0.399 + 1.49i)5-s + (−0.752 + 1.30i)7-s + (−0.763 − 0.645i)9-s − 1.01·11-s + (0.732 − 0.196i)13-s + (1.53 + 0.137i)15-s + (−0.188 − 0.0505i)17-s + (−1.63 + 0.437i)19-s + (0.965 + 1.15i)21-s + (−0.219 + 0.219i)23-s + (−1.19 + 0.689i)25-s + (−0.868 + 0.495i)27-s + (−0.924 − 0.924i)29-s + (−1.10 + 1.10i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.453 - 0.891i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.453 - 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.498485 + 0.812791i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.498485 + 0.812791i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.595 + 1.62i)T \) |
| 37 | \( 1 + (-4.71 - 3.84i)T \) |
good | 5 | \( 1 + (-0.892 - 3.33i)T + (-4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (1.99 - 3.44i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + 3.36T + 11T^{2} \) |
| 13 | \( 1 + (-2.63 + 0.707i)T + (11.2 - 6.5i)T^{2} \) |
| 17 | \( 1 + (0.777 + 0.208i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (7.12 - 1.90i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (1.05 - 1.05i)T - 23iT^{2} \) |
| 29 | \( 1 + (4.97 + 4.97i)T + 29iT^{2} \) |
| 31 | \( 1 + (6.17 - 6.17i)T - 31iT^{2} \) |
| 41 | \( 1 + (-4.81 + 8.33i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-7.91 - 7.91i)T + 43iT^{2} \) |
| 47 | \( 1 - 1.70iT - 47T^{2} \) |
| 53 | \( 1 + (-3.10 + 1.79i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.07 - 1.89i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-3.03 - 11.3i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (7.22 + 4.17i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.70 - 0.984i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 7.15iT - 73T^{2} \) |
| 79 | \( 1 + (-16.7 + 4.48i)T + (68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (-0.914 + 0.528i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.276 + 1.03i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-2.31 - 2.31i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52892953681492726293904611535, −9.471219798823774007168602125539, −8.675484205413256375293262078569, −7.79709768288814673984581050612, −6.90545104874057507734035033177, −6.02516537636469381407739943816, −5.78630823543502356515687601633, −3.66164479936688486073889523908, −2.63599924020474522385881703731, −2.19820410945322013298089768331,
0.39818856395874185648241105765, 2.20691502196767700042843155717, 3.78806705706768027266518606905, 4.31733262856620504101530436061, 5.28535211737131989321168145336, 6.18389549618227410757941496776, 7.51884648007392152030901347674, 8.397400341958282925011786941525, 9.139365843636671473044745706294, 9.702086767902986232511941673330