L(s) = 1 | + (1.03 − 1.38i)3-s + (−0.272 + 1.01i)5-s + (−0.338 − 0.586i)7-s + (−0.853 − 2.87i)9-s − 6.32·11-s + (−3.74 − 1.00i)13-s + (1.13 + 1.43i)15-s + (−2.40 + 0.644i)17-s + (−5.39 − 1.44i)19-s + (−1.16 − 0.137i)21-s + (−0.0101 − 0.0101i)23-s + (3.36 + 1.94i)25-s + (−4.87 − 1.79i)27-s + (4.64 − 4.64i)29-s + (−1.74 − 1.74i)31-s + ⋯ |
L(s) = 1 | + (0.598 − 0.801i)3-s + (−0.121 + 0.455i)5-s + (−0.127 − 0.221i)7-s + (−0.284 − 0.958i)9-s − 1.90·11-s + (−1.03 − 0.278i)13-s + (0.291 + 0.370i)15-s + (−0.583 + 0.156i)17-s + (−1.23 − 0.331i)19-s + (−0.254 − 0.0299i)21-s + (−0.00210 − 0.00210i)23-s + (0.673 + 0.388i)25-s + (−0.938 − 0.345i)27-s + (0.863 − 0.863i)29-s + (−0.312 − 0.312i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 + 0.142i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.989 + 0.142i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0435110 - 0.607704i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0435110 - 0.607704i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.03 + 1.38i)T \) |
| 37 | \( 1 + (-4.57 + 4.00i)T \) |
good | 5 | \( 1 + (0.272 - 1.01i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (0.338 + 0.586i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 6.32T + 11T^{2} \) |
| 13 | \( 1 + (3.74 + 1.00i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (2.40 - 0.644i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (5.39 + 1.44i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (0.0101 + 0.0101i)T + 23iT^{2} \) |
| 29 | \( 1 + (-4.64 + 4.64i)T - 29iT^{2} \) |
| 31 | \( 1 + (1.74 + 1.74i)T + 31iT^{2} \) |
| 41 | \( 1 + (-2.38 - 4.13i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.64 + 4.64i)T - 43iT^{2} \) |
| 47 | \( 1 + 2.77iT - 47T^{2} \) |
| 53 | \( 1 + (9.01 + 5.20i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.306 + 0.0820i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (1.49 - 5.56i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (7.70 - 4.44i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.32 + 2.49i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 16.2iT - 73T^{2} \) |
| 79 | \( 1 + (2.45 + 0.658i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-3.12 - 1.80i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.49 - 5.56i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (4.85 - 4.85i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.779040025897313928296802268170, −8.676972725312042242601016948479, −7.922392929205607732659976149130, −7.29854278461119847788334124623, −6.49998528574377679943164078646, −5.39849309272155834985809873550, −4.22847737531700940356618800362, −2.78113386624928997369416870263, −2.34824815492030209079550724449, −0.24122553158371505678805690504,
2.29581988992404780081479664127, 3.01074306437890529448925239133, 4.62476896651439520246840086274, 4.81242924779506335213695467157, 6.06178954547562736991326487258, 7.41944889553846033841479765624, 8.137106385916230183921217441335, 8.866531043822706496144899826622, 9.643317751370761754003175063725, 10.58381902346492772805433237957