L(s) = 1 | + (−0.898 − 1.48i)3-s + (0.719 − 2.68i)5-s + (2.26 + 3.91i)7-s + (−1.38 + 2.66i)9-s − 4.17·11-s + (−6.14 − 1.64i)13-s + (−4.62 + 1.34i)15-s + (−5.34 + 1.43i)17-s + (1.15 + 0.310i)19-s + (3.76 − 6.86i)21-s + (0.554 + 0.554i)23-s + (−2.35 − 1.36i)25-s + (5.18 − 0.334i)27-s + (−4.45 + 4.45i)29-s + (−5.75 − 5.75i)31-s + ⋯ |
L(s) = 1 | + (−0.518 − 0.855i)3-s + (0.321 − 1.20i)5-s + (0.854 + 1.47i)7-s + (−0.462 + 0.886i)9-s − 1.25·11-s + (−1.70 − 0.456i)13-s + (−1.19 + 0.347i)15-s + (−1.29 + 0.347i)17-s + (0.265 + 0.0711i)19-s + (0.822 − 1.49i)21-s + (0.115 + 0.115i)23-s + (−0.471 − 0.272i)25-s + (0.997 − 0.0644i)27-s + (−0.828 + 0.828i)29-s + (−1.03 − 1.03i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.758 - 0.651i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.758 - 0.651i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0235861 + 0.0636509i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0235861 + 0.0636509i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.898 + 1.48i)T \) |
| 37 | \( 1 + (1.51 + 5.89i)T \) |
good | 5 | \( 1 + (-0.719 + 2.68i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-2.26 - 3.91i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 4.17T + 11T^{2} \) |
| 13 | \( 1 + (6.14 + 1.64i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (5.34 - 1.43i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.15 - 0.310i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.554 - 0.554i)T + 23iT^{2} \) |
| 29 | \( 1 + (4.45 - 4.45i)T - 29iT^{2} \) |
| 31 | \( 1 + (5.75 + 5.75i)T + 31iT^{2} \) |
| 41 | \( 1 + (4.00 + 6.94i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.15 + 2.15i)T - 43iT^{2} \) |
| 47 | \( 1 - 6.01iT - 47T^{2} \) |
| 53 | \( 1 + (4.08 + 2.35i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.458 + 0.122i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (1.89 - 7.05i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-0.496 + 0.286i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.25 + 0.725i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 11.0iT - 73T^{2} \) |
| 79 | \( 1 + (-6.35 - 1.70i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-5.56 - 3.21i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (0.508 + 1.89i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-11.4 + 11.4i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.351809310252162707234939470707, −8.734042086832323956381425471748, −7.915162315883238924505703473776, −7.23240528063165223863535888104, −5.69449290060782952782291950396, −5.34982986006023270037727564782, −4.75835578838984527566985229399, −2.45110437587285984645748319975, −1.91451502504182279543560092523, −0.03112532131319274798061776638,
2.26114296200379442940230114978, 3.40320391651284108043956041000, 4.68301413282098205215416650484, 5.01807251300012973149065209247, 6.50349533453984773461459102870, 7.16630056258360104767011976720, 7.87798301724780040891725847534, 9.298122559769736830398128181225, 10.11850233792591340713497188631, 10.59788723531268115900372072787