L(s) = 1 | + (−0.728 − 1.57i)3-s + (0.601 − 2.24i)5-s + (−0.786 − 1.36i)7-s + (−1.93 + 2.28i)9-s + 0.738·11-s + (−5.22 − 1.40i)13-s + (−3.96 + 0.689i)15-s + (6.88 − 1.84i)17-s + (−2.79 − 0.749i)19-s + (−1.56 + 2.22i)21-s + (−5.90 − 5.90i)23-s + (−0.345 − 0.199i)25-s + (5.00 + 1.38i)27-s + (−5.65 + 5.65i)29-s + (−1.19 − 1.19i)31-s + ⋯ |
L(s) = 1 | + (−0.420 − 0.907i)3-s + (0.268 − 1.00i)5-s + (−0.297 − 0.514i)7-s + (−0.646 + 0.762i)9-s + 0.222·11-s + (−1.45 − 0.388i)13-s + (−1.02 + 0.177i)15-s + (1.66 − 0.447i)17-s + (−0.641 − 0.172i)19-s + (−0.342 + 0.486i)21-s + (−1.23 − 1.23i)23-s + (−0.0691 − 0.0399i)25-s + (0.963 + 0.265i)27-s + (−1.05 + 1.05i)29-s + (−0.215 − 0.215i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.974 - 0.224i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.974 - 0.224i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0847374 + 0.744475i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0847374 + 0.744475i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.728 + 1.57i)T \) |
| 37 | \( 1 + (-4.55 - 4.03i)T \) |
good | 5 | \( 1 + (-0.601 + 2.24i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (0.786 + 1.36i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 0.738T + 11T^{2} \) |
| 13 | \( 1 + (5.22 + 1.40i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (-6.88 + 1.84i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (2.79 + 0.749i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (5.90 + 5.90i)T + 23iT^{2} \) |
| 29 | \( 1 + (5.65 - 5.65i)T - 29iT^{2} \) |
| 31 | \( 1 + (1.19 + 1.19i)T + 31iT^{2} \) |
| 41 | \( 1 + (-4.27 - 7.41i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (7.64 - 7.64i)T - 43iT^{2} \) |
| 47 | \( 1 + 10.6iT - 47T^{2} \) |
| 53 | \( 1 + (4.00 + 2.30i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.81 + 0.755i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (2.69 - 10.0i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (5.21 - 3.00i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.51 - 1.44i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 14.9iT - 73T^{2} \) |
| 79 | \( 1 + (1.59 + 0.426i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (12.2 + 7.06i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (3.62 + 13.5i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.824 + 0.824i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.824618512309704572796443823672, −8.715506329360365821486555246006, −7.85499909461341326228185534958, −7.20601658045880549985390361653, −6.18511482049050190908993912913, −5.30608983702374608205755378467, −4.54756406800897038777836303058, −2.96327208718495648404887830549, −1.62055977909699153196382461585, −0.36636744227454104219497583009,
2.22819485068870758268208538489, 3.33488705895428297245729977163, 4.22991078167244762374487789020, 5.59225922860123326943086793866, 5.96418290426131476519908200048, 7.11189446546954508171771127822, 7.988864863465389241538138742785, 9.375352959650433177658196258381, 9.739119648050017514664738990299, 10.42823614128708255039244786081