L(s) = 1 | + (0.925 − 1.46i)3-s + (0.476 − 1.77i)5-s + (−2.08 − 3.61i)7-s + (−1.28 − 2.70i)9-s + 2.49·11-s + (5.42 + 1.45i)13-s + (−2.16 − 2.34i)15-s + (−4.54 + 1.21i)17-s + (3.13 + 0.840i)19-s + (−7.21 − 0.288i)21-s + (−1.79 − 1.79i)23-s + (1.39 + 0.807i)25-s + (−5.15 − 0.621i)27-s + (−6.12 + 6.12i)29-s + (−3.95 − 3.95i)31-s + ⋯ |
L(s) = 1 | + (0.534 − 0.845i)3-s + (0.212 − 0.794i)5-s + (−0.787 − 1.36i)7-s + (−0.429 − 0.903i)9-s + 0.753·11-s + (1.50 + 0.402i)13-s + (−0.558 − 0.604i)15-s + (−1.10 + 0.295i)17-s + (0.719 + 0.192i)19-s + (−1.57 − 0.0629i)21-s + (−0.375 − 0.375i)23-s + (0.279 + 0.161i)25-s + (−0.992 − 0.119i)27-s + (−1.13 + 1.13i)29-s + (−0.710 − 0.710i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.680132 - 1.60416i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.680132 - 1.60416i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.925 + 1.46i)T \) |
| 37 | \( 1 + (-1.62 + 5.86i)T \) |
good | 5 | \( 1 + (-0.476 + 1.77i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (2.08 + 3.61i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 2.49T + 11T^{2} \) |
| 13 | \( 1 + (-5.42 - 1.45i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (4.54 - 1.21i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-3.13 - 0.840i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (1.79 + 1.79i)T + 23iT^{2} \) |
| 29 | \( 1 + (6.12 - 6.12i)T - 29iT^{2} \) |
| 31 | \( 1 + (3.95 + 3.95i)T + 31iT^{2} \) |
| 41 | \( 1 + (2.65 + 4.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.38 - 5.38i)T - 43iT^{2} \) |
| 47 | \( 1 + 5.49iT - 47T^{2} \) |
| 53 | \( 1 + (-10.7 - 6.21i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.91 + 1.04i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (0.537 - 2.00i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-12.0 + 6.93i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-13.3 + 7.70i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 11.3iT - 73T^{2} \) |
| 79 | \( 1 + (9.49 + 2.54i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-6.83 - 3.94i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.26 - 8.44i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.136 + 0.136i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.474701334741232732641730654500, −9.013981945355409258868354054937, −8.209469014922715922180891261757, −7.06863169006887489519191974591, −6.65053363302020340423516542435, −5.63090374631842654962190375582, −4.00059758837196415016496652927, −3.60227563201341941319793272718, −1.80493792166872356725789817453, −0.807813469896483850740962124954,
2.16615349204374954293050496853, 3.14606217646247530310020190030, 3.83549827521207783713691302672, 5.27356879461286405918895863713, 6.09345253563088022470594807978, 6.84209137868450157521549552463, 8.246207150942734985974760799867, 8.915861721048139451069722677635, 9.514439735931465880997552265842, 10.27621957076525719667155857390