L(s) = 1 | + (−1.31 + 1.12i)3-s + (1.00 − 3.73i)5-s + (1.76 + 3.05i)7-s + (0.453 − 2.96i)9-s − 4.23·11-s + (2.67 + 0.717i)13-s + (2.89 + 6.03i)15-s + (2.21 − 0.593i)17-s + (6.67 + 1.78i)19-s + (−5.75 − 2.02i)21-s + (−5.55 − 5.55i)23-s + (−8.60 − 4.96i)25-s + (2.75 + 4.40i)27-s + (4.01 − 4.01i)29-s + (−5.25 − 5.25i)31-s + ⋯ |
L(s) = 1 | + (−0.758 + 0.651i)3-s + (0.447 − 1.66i)5-s + (0.665 + 1.15i)7-s + (0.151 − 0.988i)9-s − 1.27·11-s + (0.742 + 0.198i)13-s + (0.748 + 1.55i)15-s + (0.537 − 0.143i)17-s + (1.53 + 0.410i)19-s + (−1.25 − 0.441i)21-s + (−1.15 − 1.15i)23-s + (−1.72 − 0.993i)25-s + (0.529 + 0.848i)27-s + (0.745 − 0.745i)29-s + (−0.944 − 0.944i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.864 + 0.502i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.864 + 0.502i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.30084 - 0.350361i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30084 - 0.350361i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.31 - 1.12i)T \) |
| 37 | \( 1 + (-5.86 + 1.62i)T \) |
good | 5 | \( 1 + (-1.00 + 3.73i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-1.76 - 3.05i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 4.23T + 11T^{2} \) |
| 13 | \( 1 + (-2.67 - 0.717i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (-2.21 + 0.593i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-6.67 - 1.78i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (5.55 + 5.55i)T + 23iT^{2} \) |
| 29 | \( 1 + (-4.01 + 4.01i)T - 29iT^{2} \) |
| 31 | \( 1 + (5.25 + 5.25i)T + 31iT^{2} \) |
| 41 | \( 1 + (-4.53 - 7.85i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.30 + 4.30i)T - 43iT^{2} \) |
| 47 | \( 1 + 5.68iT - 47T^{2} \) |
| 53 | \( 1 + (-2.63 - 1.52i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-8.14 + 2.18i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (1.77 - 6.63i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-13.0 + 7.50i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.60 + 1.50i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 7.53iT - 73T^{2} \) |
| 79 | \( 1 + (-3.18 - 0.852i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-0.0846 - 0.0488i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.48 - 9.28i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (6.73 - 6.73i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.840307454397779894888564501780, −9.382347044743132056734104407009, −8.410223582883337491378766557038, −7.898544719993328343951101342781, −6.02915656367174521225169900180, −5.53598262588231108583552985150, −5.00279375972750816139328086465, −4.04818110050165019528031678230, −2.31185291975213941895319974547, −0.842444415205125206740941387798,
1.25150637238173146361362550882, 2.61860530072363501328017308914, 3.70849766865442670258229219909, 5.23830942619752480142572187697, 5.85780255404795343297871017621, 6.95591554808393089002842748242, 7.47869292591583250234652011559, 8.004997035377593905072133250968, 9.818667564732349811880059872562, 10.42060044077875775480454750151