L(s) = 1 | − 3-s + 2.52·5-s + 2.91·7-s + 9-s − 1.28·11-s + 3.28·13-s − 2.52·15-s + 1.23·17-s + 1.28·19-s − 2.91·21-s − 4.01·23-s + 1.37·25-s − 27-s + 1.47·29-s − 2.57·31-s + 1.28·33-s + 7.36·35-s − 37-s − 3.28·39-s + 10.4·41-s + 4·43-s + 2.52·45-s − 5.83·47-s + 1.50·49-s − 1.23·51-s − 2.54·53-s − 3.25·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.12·5-s + 1.10·7-s + 0.333·9-s − 0.388·11-s + 0.912·13-s − 0.651·15-s + 0.299·17-s + 0.295·19-s − 0.636·21-s − 0.838·23-s + 0.274·25-s − 0.192·27-s + 0.274·29-s − 0.463·31-s + 0.224·33-s + 1.24·35-s − 0.164·37-s − 0.526·39-s + 1.62·41-s + 0.609·43-s + 0.376·45-s − 0.850·47-s + 0.215·49-s − 0.172·51-s − 0.349·53-s − 0.438·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.837733160\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.837733160\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 37 | \( 1 + T \) |
good | 5 | \( 1 - 2.52T + 5T^{2} \) |
| 7 | \( 1 - 2.91T + 7T^{2} \) |
| 11 | \( 1 + 1.28T + 11T^{2} \) |
| 13 | \( 1 - 3.28T + 13T^{2} \) |
| 17 | \( 1 - 1.23T + 17T^{2} \) |
| 19 | \( 1 - 1.28T + 19T^{2} \) |
| 23 | \( 1 + 4.01T + 23T^{2} \) |
| 29 | \( 1 - 1.47T + 29T^{2} \) |
| 31 | \( 1 + 2.57T + 31T^{2} \) |
| 41 | \( 1 - 10.4T + 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 + 5.83T + 47T^{2} \) |
| 53 | \( 1 + 2.54T + 53T^{2} \) |
| 59 | \( 1 + 2.05T + 59T^{2} \) |
| 61 | \( 1 - 14.4T + 61T^{2} \) |
| 67 | \( 1 - 13.2T + 67T^{2} \) |
| 71 | \( 1 - 3.25T + 71T^{2} \) |
| 73 | \( 1 - 3.86T + 73T^{2} \) |
| 79 | \( 1 + 4.78T + 79T^{2} \) |
| 83 | \( 1 + 4.54T + 83T^{2} \) |
| 89 | \( 1 + 6.76T + 89T^{2} \) |
| 97 | \( 1 - 11.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16642181389851094667758022238, −9.453203454792905694367330617591, −8.398980364465214454170142247519, −7.64886192572867696445405211201, −6.46254186089698669039792261316, −5.69877114831237847241150702173, −5.07695660766012215640033038970, −3.91694695588404476565397090614, −2.30324921962372235575518025450, −1.26629604435532740097281697319,
1.26629604435532740097281697319, 2.30324921962372235575518025450, 3.91694695588404476565397090614, 5.07695660766012215640033038970, 5.69877114831237847241150702173, 6.46254186089698669039792261316, 7.64886192572867696445405211201, 8.398980364465214454170142247519, 9.453203454792905694367330617591, 10.16642181389851094667758022238