Properties

Label 2-888-1.1-c1-0-6
Degree $2$
Conductor $888$
Sign $1$
Analytic cond. $7.09071$
Root an. cond. $2.66283$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2.52·5-s + 2.91·7-s + 9-s − 1.28·11-s + 3.28·13-s − 2.52·15-s + 1.23·17-s + 1.28·19-s − 2.91·21-s − 4.01·23-s + 1.37·25-s − 27-s + 1.47·29-s − 2.57·31-s + 1.28·33-s + 7.36·35-s − 37-s − 3.28·39-s + 10.4·41-s + 4·43-s + 2.52·45-s − 5.83·47-s + 1.50·49-s − 1.23·51-s − 2.54·53-s − 3.25·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.12·5-s + 1.10·7-s + 0.333·9-s − 0.388·11-s + 0.912·13-s − 0.651·15-s + 0.299·17-s + 0.295·19-s − 0.636·21-s − 0.838·23-s + 0.274·25-s − 0.192·27-s + 0.274·29-s − 0.463·31-s + 0.224·33-s + 1.24·35-s − 0.164·37-s − 0.526·39-s + 1.62·41-s + 0.609·43-s + 0.376·45-s − 0.850·47-s + 0.215·49-s − 0.172·51-s − 0.349·53-s − 0.438·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(888\)    =    \(2^{3} \cdot 3 \cdot 37\)
Sign: $1$
Analytic conductor: \(7.09071\)
Root analytic conductor: \(2.66283\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 888,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.837733160\)
\(L(\frac12)\) \(\approx\) \(1.837733160\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
37 \( 1 + T \)
good5 \( 1 - 2.52T + 5T^{2} \)
7 \( 1 - 2.91T + 7T^{2} \)
11 \( 1 + 1.28T + 11T^{2} \)
13 \( 1 - 3.28T + 13T^{2} \)
17 \( 1 - 1.23T + 17T^{2} \)
19 \( 1 - 1.28T + 19T^{2} \)
23 \( 1 + 4.01T + 23T^{2} \)
29 \( 1 - 1.47T + 29T^{2} \)
31 \( 1 + 2.57T + 31T^{2} \)
41 \( 1 - 10.4T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 5.83T + 47T^{2} \)
53 \( 1 + 2.54T + 53T^{2} \)
59 \( 1 + 2.05T + 59T^{2} \)
61 \( 1 - 14.4T + 61T^{2} \)
67 \( 1 - 13.2T + 67T^{2} \)
71 \( 1 - 3.25T + 71T^{2} \)
73 \( 1 - 3.86T + 73T^{2} \)
79 \( 1 + 4.78T + 79T^{2} \)
83 \( 1 + 4.54T + 83T^{2} \)
89 \( 1 + 6.76T + 89T^{2} \)
97 \( 1 - 11.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16642181389851094667758022238, −9.453203454792905694367330617591, −8.398980364465214454170142247519, −7.64886192572867696445405211201, −6.46254186089698669039792261316, −5.69877114831237847241150702173, −5.07695660766012215640033038970, −3.91694695588404476565397090614, −2.30324921962372235575518025450, −1.26629604435532740097281697319, 1.26629604435532740097281697319, 2.30324921962372235575518025450, 3.91694695588404476565397090614, 5.07695660766012215640033038970, 5.69877114831237847241150702173, 6.46254186089698669039792261316, 7.64886192572867696445405211201, 8.398980364465214454170142247519, 9.453203454792905694367330617591, 10.16642181389851094667758022238

Graph of the $Z$-function along the critical line