Properties

Label 2-888-1.1-c1-0-12
Degree $2$
Conductor $888$
Sign $-1$
Analytic cond. $7.09071$
Root an. cond. $2.66283$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 0.732·5-s − 2·7-s + 9-s + 1.46·11-s + 3.46·13-s + 0.732·15-s + 0.732·17-s − 5.46·19-s + 2·21-s − 1.26·23-s − 4.46·25-s − 27-s − 6.19·29-s − 4·31-s − 1.46·33-s + 1.46·35-s − 37-s − 3.46·39-s − 2·41-s − 10.9·43-s − 0.732·45-s − 6.92·47-s − 3·49-s − 0.732·51-s + 10.3·53-s − 1.07·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.327·5-s − 0.755·7-s + 0.333·9-s + 0.441·11-s + 0.960·13-s + 0.189·15-s + 0.177·17-s − 1.25·19-s + 0.436·21-s − 0.264·23-s − 0.892·25-s − 0.192·27-s − 1.15·29-s − 0.718·31-s − 0.254·33-s + 0.247·35-s − 0.164·37-s − 0.554·39-s − 0.312·41-s − 1.66·43-s − 0.109·45-s − 1.01·47-s − 0.428·49-s − 0.102·51-s + 1.42·53-s − 0.144·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(888\)    =    \(2^{3} \cdot 3 \cdot 37\)
Sign: $-1$
Analytic conductor: \(7.09071\)
Root analytic conductor: \(2.66283\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 888,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
37 \( 1 + T \)
good5 \( 1 + 0.732T + 5T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
11 \( 1 - 1.46T + 11T^{2} \)
13 \( 1 - 3.46T + 13T^{2} \)
17 \( 1 - 0.732T + 17T^{2} \)
19 \( 1 + 5.46T + 19T^{2} \)
23 \( 1 + 1.26T + 23T^{2} \)
29 \( 1 + 6.19T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 10.9T + 43T^{2} \)
47 \( 1 + 6.92T + 47T^{2} \)
53 \( 1 - 10.3T + 53T^{2} \)
59 \( 1 - 1.26T + 59T^{2} \)
61 \( 1 - 4.92T + 61T^{2} \)
67 \( 1 + 6T + 67T^{2} \)
71 \( 1 - 4T + 71T^{2} \)
73 \( 1 + 5.46T + 73T^{2} \)
79 \( 1 + 2.53T + 79T^{2} \)
83 \( 1 + 2.53T + 83T^{2} \)
89 \( 1 + 2.19T + 89T^{2} \)
97 \( 1 - 2.39T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.804500009126266480529235270676, −8.894090084411864868085469021266, −8.048593573838398781703861585157, −6.93051017174407332581792160104, −6.28216157537238685306256902433, −5.45620909190558287087790382577, −4.13976214866306107342599690879, −3.46709519574716159658348823481, −1.77326906115428539823514408004, 0, 1.77326906115428539823514408004, 3.46709519574716159658348823481, 4.13976214866306107342599690879, 5.45620909190558287087790382577, 6.28216157537238685306256902433, 6.93051017174407332581792160104, 8.048593573838398781703861585157, 8.894090084411864868085469021266, 9.804500009126266480529235270676

Graph of the $Z$-function along the critical line