L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.707 + 1.58i)3-s + (−0.499 − 0.866i)4-s + (−1.72 − 2.98i)5-s + (−1.01 − 1.40i)6-s + 0.999·8-s + (−2.00 − 2.23i)9-s + 3.44·10-s + (−2 + 3.46i)11-s + (1.72 − 0.178i)12-s + (−2.12 − 3.67i)13-s + (5.93 − 0.614i)15-s + (−0.5 + 0.866i)16-s − 1.41·17-s + (2.93 − 0.614i)18-s + 6.27·19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.408 + 0.912i)3-s + (−0.249 − 0.433i)4-s + (−0.770 − 1.33i)5-s + (−0.414 − 0.572i)6-s + 0.353·8-s + (−0.666 − 0.745i)9-s + 1.08·10-s + (−0.603 + 1.04i)11-s + (0.497 − 0.0514i)12-s + (−0.588 − 1.01i)13-s + (1.53 − 0.158i)15-s + (−0.125 + 0.216i)16-s − 0.342·17-s + (0.692 − 0.144i)18-s + 1.43·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0315 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0315 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.502241 + 0.518366i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.502241 + 0.518366i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.707 - 1.58i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1.72 + 2.98i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2 - 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.12 + 3.67i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 1.41T + 17T^{2} \) |
| 19 | \( 1 - 6.27T + 19T^{2} \) |
| 23 | \( 1 + (-4.37 - 7.57i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.563 - 0.976i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.73 - 4.74i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5.74T + 37T^{2} \) |
| 41 | \( 1 + (-2.82 - 4.89i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.563 - 0.976i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.03 - 3.51i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 12.6T + 53T^{2} \) |
| 59 | \( 1 + (4.15 + 7.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.13 + 5.43i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.43 - 5.95i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.87T + 71T^{2} \) |
| 73 | \( 1 + 4.42T + 73T^{2} \) |
| 79 | \( 1 + (-0.936 + 1.62i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.32 - 2.29i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 7.07T + 89T^{2} \) |
| 97 | \( 1 + (-7.50 + 13.0i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.973840305012260383332539092209, −9.572205996623057189242538106045, −8.717047081825804537160484227098, −7.82761514668162125097560738323, −7.20951841007316329763717289698, −5.64102460670974753899534275023, −5.05361191953342865474012648147, −4.51091266574658026852749863081, −3.19674746244636255027984640686, −0.937175470315551712895235315786,
0.56434663958296403578489086884, 2.42034476927706105155928745164, 3.02838704758719297496208954640, 4.36461293611791741386333111489, 5.71355121570505002106716890578, 6.79610513235896027160185162963, 7.32259012712251841335567166765, 8.105535506563281260031857954979, 9.018892291257453971190048669793, 10.27699174909698602122685059103