Properties

Label 2-882-9.7-c1-0-6
Degree $2$
Conductor $882$
Sign $-0.0315 - 0.999i$
Analytic cond. $7.04280$
Root an. cond. $2.65382$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.707 + 1.58i)3-s + (−0.499 − 0.866i)4-s + (−1.72 − 2.98i)5-s + (−1.01 − 1.40i)6-s + 0.999·8-s + (−2.00 − 2.23i)9-s + 3.44·10-s + (−2 + 3.46i)11-s + (1.72 − 0.178i)12-s + (−2.12 − 3.67i)13-s + (5.93 − 0.614i)15-s + (−0.5 + 0.866i)16-s − 1.41·17-s + (2.93 − 0.614i)18-s + 6.27·19-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.408 + 0.912i)3-s + (−0.249 − 0.433i)4-s + (−0.770 − 1.33i)5-s + (−0.414 − 0.572i)6-s + 0.353·8-s + (−0.666 − 0.745i)9-s + 1.08·10-s + (−0.603 + 1.04i)11-s + (0.497 − 0.0514i)12-s + (−0.588 − 1.01i)13-s + (1.53 − 0.158i)15-s + (−0.125 + 0.216i)16-s − 0.342·17-s + (0.692 − 0.144i)18-s + 1.43·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0315 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0315 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $-0.0315 - 0.999i$
Analytic conductor: \(7.04280\)
Root analytic conductor: \(2.65382\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{882} (295, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :1/2),\ -0.0315 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.502241 + 0.518366i\)
\(L(\frac12)\) \(\approx\) \(0.502241 + 0.518366i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
3 \( 1 + (0.707 - 1.58i)T \)
7 \( 1 \)
good5 \( 1 + (1.72 + 2.98i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (2 - 3.46i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (2.12 + 3.67i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + 1.41T + 17T^{2} \)
19 \( 1 - 6.27T + 19T^{2} \)
23 \( 1 + (-4.37 - 7.57i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (0.563 - 0.976i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (-2.73 - 4.74i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 5.74T + 37T^{2} \)
41 \( 1 + (-2.82 - 4.89i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (0.563 - 0.976i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (2.03 - 3.51i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 - 12.6T + 53T^{2} \)
59 \( 1 + (4.15 + 7.19i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-3.13 + 5.43i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-3.43 - 5.95i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 9.87T + 71T^{2} \)
73 \( 1 + 4.42T + 73T^{2} \)
79 \( 1 + (-0.936 + 1.62i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (1.32 - 2.29i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + 7.07T + 89T^{2} \)
97 \( 1 + (-7.50 + 13.0i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.973840305012260383332539092209, −9.572205996623057189242538106045, −8.717047081825804537160484227098, −7.82761514668162125097560738323, −7.20951841007316329763717289698, −5.64102460670974753899534275023, −5.05361191953342865474012648147, −4.51091266574658026852749863081, −3.19674746244636255027984640686, −0.937175470315551712895235315786, 0.56434663958296403578489086884, 2.42034476927706105155928745164, 3.02838704758719297496208954640, 4.36461293611791741386333111489, 5.71355121570505002106716890578, 6.79610513235896027160185162963, 7.32259012712251841335567166765, 8.105535506563281260031857954979, 9.018892291257453971190048669793, 10.27699174909698602122685059103

Graph of the $Z$-function along the critical line