L(s) = 1 | + (−0.5 + 0.866i)2-s + (1.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (−1.5 + 0.866i)6-s + 0.999·8-s + (1.5 + 2.59i)9-s + (1.5 − 2.59i)11-s − 1.73i·12-s + (1 + 1.73i)13-s + (−0.5 + 0.866i)16-s + 3·17-s − 3·18-s + 19-s + (1.5 + 2.59i)22-s + (3 + 5.19i)23-s + (1.49 + 0.866i)24-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.866 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.612 + 0.353i)6-s + 0.353·8-s + (0.5 + 0.866i)9-s + (0.452 − 0.783i)11-s − 0.499i·12-s + (0.277 + 0.480i)13-s + (−0.125 + 0.216i)16-s + 0.727·17-s − 0.707·18-s + 0.229·19-s + (0.319 + 0.553i)22-s + (0.625 + 1.08i)23-s + (0.306 + 0.176i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.40452 + 1.17853i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.40452 + 1.17853i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (-1.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1 - 1.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 - T + 19T^{2} \) |
| 23 | \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3 - 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4T + 37T^{2} \) |
| 41 | \( 1 + (-4.5 - 7.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3 - 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 12T + 53T^{2} \) |
| 59 | \( 1 + (-1.5 - 2.59i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4 + 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.5 + 4.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 12T + 71T^{2} \) |
| 73 | \( 1 + 11T + 73T^{2} \) |
| 79 | \( 1 + (-2 + 3.46i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6 + 10.3i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (-2.5 + 4.33i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08638922281481078873384580728, −9.210979260704216312337666622340, −8.789105179004258680002390756483, −7.85634586241254813168047375829, −7.13658052134032557412985686404, −6.02555638910057487605016428280, −5.07335911007181134607128627244, −3.96481883176869853734896227193, −3.03926261833586846542103257069, −1.42891684345548479434657585203,
1.08028594500863224715436795326, 2.25798378495195265722827178245, 3.29962880189108273672831164416, 4.19667755000963154648833107927, 5.53762830792010891679050044600, 6.92928032823744119478600769676, 7.44059151717152319048962369091, 8.487544419431382483186701733064, 9.040276262268418094105582611928, 9.903032274368527798652125197368