L(s) = 1 | + (−1 + 1.73i)2-s + (−1.99 − 3.46i)4-s + (−3.5 + 6.06i)5-s + 7.99·8-s + (−7 − 12.1i)10-s + (17.5 + 30.3i)11-s − 66·13-s + (−8 + 13.8i)16-s + (−29.5 − 51.0i)17-s + (68.5 − 118. i)19-s + 28·20-s − 70·22-s + (−3.5 + 6.06i)23-s + (38 + 65.8i)25-s + (66 − 114. i)26-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.313 + 0.542i)5-s + 0.353·8-s + (−0.221 − 0.383i)10-s + (0.479 + 0.830i)11-s − 1.40·13-s + (−0.125 + 0.216i)16-s + (−0.420 − 0.728i)17-s + (0.827 − 1.43i)19-s + 0.313·20-s − 0.678·22-s + (−0.0317 + 0.0549i)23-s + (0.303 + 0.526i)25-s + (0.497 − 0.862i)26-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(0.991+0.126i)Λ(4−s)
Λ(s)=(=(882s/2ΓC(s+3/2)L(s)(0.991+0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
0.991+0.126i
|
Analytic conductor: |
52.0396 |
Root analytic conductor: |
7.21385 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(667,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :3/2), 0.991+0.126i)
|
Particular Values
L(2) |
≈ |
1.022900609 |
L(21) |
≈ |
1.022900609 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1−1.73i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(3.5−6.06i)T+(−62.5−108.i)T2 |
| 11 | 1+(−17.5−30.3i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+66T+2.19e3T2 |
| 17 | 1+(29.5+51.0i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(−68.5+118.i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(3.5−6.06i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+106T+2.43e4T2 |
| 31 | 1+(−37.5−64.9i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(5.5−9.52i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1+498T+6.89e4T2 |
| 43 | 1−260T+7.95e4T2 |
| 47 | 1+(−85.5+148.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(208.5+361.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(−8.5−14.7i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−25.5+44.1i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(219.5+380.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−784T+3.57e5T2 |
| 73 | 1+(−147.5−255.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(−247.5+428.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1−932T+5.71e5T2 |
| 89 | 1+(−436.5+756.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1−290T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.520398906676197926588163413478, −9.076260019416269867917586082603, −7.78204159044455625372466350830, −7.07178880730073154365133204922, −6.75390374056931334616334687400, −5.21205112577994915283732849663, −4.67988562440756188989188847818, −3.25449409154516855377114838133, −2.07252921039306952139782110772, −0.40338328084342301524641908582,
0.832043311305833913523232234021, 2.03693154474428314659159210349, 3.32198324117737817605549476503, 4.21354458573971250352090719392, 5.23451480780146545295883837705, 6.30000082153689471637851609023, 7.51927821940859444470299721761, 8.187452947395834703355436028831, 8.997042314847306825319242943007, 9.783844137183922726823207024269