L(s) = 1 | + 4·2-s + 16·4-s + 26·5-s + 64·8-s + 104·10-s − 664·11-s − 318·13-s + 256·16-s + 1.58e3·17-s − 236·19-s + 416·20-s − 2.65e3·22-s − 2.21e3·23-s − 2.44e3·25-s − 1.27e3·26-s + 4.95e3·29-s + 7.12e3·31-s + 1.02e3·32-s + 6.32e3·34-s + 4.35e3·37-s − 944·38-s + 1.66e3·40-s + 1.05e4·41-s − 8.45e3·43-s − 1.06e4·44-s − 8.84e3·46-s + 5.35e3·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.465·5-s + 0.353·8-s + 0.328·10-s − 1.65·11-s − 0.521·13-s + 1/4·16-s + 1.32·17-s − 0.149·19-s + 0.232·20-s − 1.16·22-s − 0.871·23-s − 0.783·25-s − 0.369·26-s + 1.09·29-s + 1.33·31-s + 0.176·32-s + 0.938·34-s + 0.523·37-s − 0.106·38-s + 0.164·40-s + 0.979·41-s − 0.697·43-s − 0.827·44-s − 0.616·46-s + 0.353·47-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(882s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
3.562453157 |
L(21) |
≈ |
3.562453157 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p2T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1−26T+p5T2 |
| 11 | 1+664T+p5T2 |
| 13 | 1+318T+p5T2 |
| 17 | 1−1582T+p5T2 |
| 19 | 1+236T+p5T2 |
| 23 | 1+2212T+p5T2 |
| 29 | 1−4954T+p5T2 |
| 31 | 1−7128T+p5T2 |
| 37 | 1−4358T+p5T2 |
| 41 | 1−10542T+p5T2 |
| 43 | 1+8452T+p5T2 |
| 47 | 1−5352T+p5T2 |
| 53 | 1−33354T+p5T2 |
| 59 | 1+15436T+p5T2 |
| 61 | 1−36762T+p5T2 |
| 67 | 1−40972T+p5T2 |
| 71 | 1−9092T+p5T2 |
| 73 | 1−73454T+p5T2 |
| 79 | 1−89400T+p5T2 |
| 83 | 1+6428T+p5T2 |
| 89 | 1+122658T+p5T2 |
| 97 | 1+21370T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.830204412266161579588226374633, −8.200904634741764565590055787780, −7.79519147296136066151975152302, −6.66413902296177698957089246806, −5.67832781002998429403441765829, −5.16296511657495689373863409054, −4.08586608337112018589326259123, −2.85577409699452078525149474351, −2.20943146850104180000624805886, −0.74042326125537727438094954709,
0.74042326125537727438094954709, 2.20943146850104180000624805886, 2.85577409699452078525149474351, 4.08586608337112018589326259123, 5.16296511657495689373863409054, 5.67832781002998429403441765829, 6.66413902296177698957089246806, 7.79519147296136066151975152302, 8.200904634741764565590055787780, 9.830204412266161579588226374633