L(s) = 1 | + (1.01 − 3.13i)3-s + (0.809 − 0.587i)5-s + (−1.08 − 3.34i)7-s + (−6.34 − 4.61i)9-s + (1.91 − 2.70i)11-s + (3.45 + 2.51i)13-s + (−1.01 − 3.13i)15-s + (−1.28 + 0.934i)17-s + (−1.71 + 5.27i)19-s − 11.5·21-s + 6.39·23-s + (0.309 − 0.951i)25-s + (−12.9 + 9.37i)27-s + (−0.117 − 0.362i)29-s + (−0.615 − 0.446i)31-s + ⋯ |
L(s) = 1 | + (0.587 − 1.80i)3-s + (0.361 − 0.262i)5-s + (−0.410 − 1.26i)7-s + (−2.11 − 1.53i)9-s + (0.577 − 0.816i)11-s + (0.958 + 0.696i)13-s + (−0.262 − 0.808i)15-s + (−0.311 + 0.226i)17-s + (−0.393 + 1.21i)19-s − 2.52·21-s + 1.33·23-s + (0.0618 − 0.190i)25-s + (−2.48 + 1.80i)27-s + (−0.0218 − 0.0673i)29-s + (−0.110 − 0.0802i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 + 0.343i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 + 0.343i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.328367 - 1.85325i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.328367 - 1.85325i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-1.91 + 2.70i)T \) |
good | 3 | \( 1 + (-1.01 + 3.13i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (1.08 + 3.34i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-3.45 - 2.51i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.28 - 0.934i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.71 - 5.27i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 6.39T + 23T^{2} \) |
| 29 | \( 1 + (0.117 + 0.362i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (0.615 + 0.446i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.448 + 1.38i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.89 - 5.82i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 7.19T + 43T^{2} \) |
| 47 | \( 1 + (1.33 - 4.11i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.62 - 4.08i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (3.92 + 12.0i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-7.19 + 5.22i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 12.5T + 67T^{2} \) |
| 71 | \( 1 + (-5.95 + 4.32i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.17 - 6.68i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (5.65 + 4.11i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (8.69 - 6.31i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 0.451T + 89T^{2} \) |
| 97 | \( 1 + (-2.24 - 1.63i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.482699068729691632864833316623, −8.713870906164138796936673428060, −8.061880529450913168861334394005, −7.10675176560281375652539384462, −6.49039733799253736833932208943, −5.88221784323415626807145619572, −4.03328802950578394513163961759, −3.14723107886132476039404816423, −1.68163082025527649219415883263, −0.894878432383776502689485322093,
2.43141283534897768680821204705, 3.12847978980293193779670340543, 4.20944091239351956889653283468, 5.15675559866730233402486488106, 5.86640939958215537847841280054, 7.06168429165983858311183871412, 8.632133525682987108524352040578, 8.920455489438658199613974206891, 9.531127453347271166687969724828, 10.41746572037621769775865563473