Properties

Label 2-87e2-1.1-c1-0-95
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.0831·2-s − 1.99·4-s − 1.93·5-s + 0.343·7-s − 0.332·8-s − 0.160·10-s + 2.42·11-s + 3.63·13-s + 0.0285·14-s + 3.95·16-s + 6.15·17-s − 1.35·19-s + 3.84·20-s + 0.201·22-s + 3.46·23-s − 1.27·25-s + 0.301·26-s − 0.685·28-s + 10.9·31-s + 0.993·32-s + 0.511·34-s − 0.663·35-s − 3.08·37-s − 0.112·38-s + 0.640·40-s − 5.28·41-s − 0.00844·43-s + ⋯
L(s)  = 1  + 0.0588·2-s − 0.996·4-s − 0.863·5-s + 0.129·7-s − 0.117·8-s − 0.0507·10-s + 0.730·11-s + 1.00·13-s + 0.00764·14-s + 0.989·16-s + 1.49·17-s − 0.309·19-s + 0.860·20-s + 0.0429·22-s + 0.722·23-s − 0.254·25-s + 0.0592·26-s − 0.129·28-s + 1.97·31-s + 0.175·32-s + 0.0877·34-s − 0.112·35-s − 0.507·37-s − 0.0182·38-s + 0.101·40-s − 0.825·41-s − 0.00128·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.557859621\)
\(L(\frac12)\) \(\approx\) \(1.557859621\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 - 0.0831T + 2T^{2} \)
5 \( 1 + 1.93T + 5T^{2} \)
7 \( 1 - 0.343T + 7T^{2} \)
11 \( 1 - 2.42T + 11T^{2} \)
13 \( 1 - 3.63T + 13T^{2} \)
17 \( 1 - 6.15T + 17T^{2} \)
19 \( 1 + 1.35T + 19T^{2} \)
23 \( 1 - 3.46T + 23T^{2} \)
31 \( 1 - 10.9T + 31T^{2} \)
37 \( 1 + 3.08T + 37T^{2} \)
41 \( 1 + 5.28T + 41T^{2} \)
43 \( 1 + 0.00844T + 43T^{2} \)
47 \( 1 - 5.79T + 47T^{2} \)
53 \( 1 - 4.14T + 53T^{2} \)
59 \( 1 + 5.76T + 59T^{2} \)
61 \( 1 + 6.23T + 61T^{2} \)
67 \( 1 - 11.0T + 67T^{2} \)
71 \( 1 + 12.8T + 71T^{2} \)
73 \( 1 - 0.459T + 73T^{2} \)
79 \( 1 + 12.4T + 79T^{2} \)
83 \( 1 + 2.87T + 83T^{2} \)
89 \( 1 - 12.2T + 89T^{2} \)
97 \( 1 + 2.72T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.975290220886155502592716458771, −7.37351196471227834058832651596, −6.39221520778612307925936373271, −5.78741643664657817163740311876, −4.89701630995171847474963232563, −4.29335639596900699488492095342, −3.58731462954538532817590145292, −3.09551287850145345631067777469, −1.45888059965780656837024871940, −0.69538489021728697424033390715, 0.69538489021728697424033390715, 1.45888059965780656837024871940, 3.09551287850145345631067777469, 3.58731462954538532817590145292, 4.29335639596900699488492095342, 4.89701630995171847474963232563, 5.78741643664657817163740311876, 6.39221520778612307925936373271, 7.37351196471227834058832651596, 7.975290220886155502592716458771

Graph of the $Z$-function along the critical line