Properties

Label 2-87e2-1.1-c1-0-76
Degree 22
Conductor 75697569
Sign 11
Analytic cond. 60.438760.4387
Root an. cond. 7.774237.77423
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.08·2-s + 2.34·4-s − 0.992·5-s + 2.45·7-s − 0.726·8-s + 2.06·10-s − 0.745·11-s + 0.730·13-s − 5.11·14-s − 3.18·16-s + 4.76·17-s + 1.38·19-s − 2.33·20-s + 1.55·22-s − 5.31·23-s − 4.01·25-s − 1.52·26-s + 5.75·28-s − 0.563·31-s + 8.08·32-s − 9.93·34-s − 2.43·35-s + 9.49·37-s − 2.88·38-s + 0.721·40-s − 5.63·41-s + 11.0·43-s + ⋯
L(s)  = 1  − 1.47·2-s + 1.17·4-s − 0.443·5-s + 0.926·7-s − 0.256·8-s + 0.654·10-s − 0.224·11-s + 0.202·13-s − 1.36·14-s − 0.795·16-s + 1.15·17-s + 0.317·19-s − 0.521·20-s + 0.331·22-s − 1.10·23-s − 0.803·25-s − 0.298·26-s + 1.08·28-s − 0.101·31-s + 1.42·32-s − 1.70·34-s − 0.411·35-s + 1.56·37-s − 0.467·38-s + 0.114·40-s − 0.880·41-s + 1.67·43-s + ⋯

Functional equation

Λ(s)=(7569s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(7569s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 75697569    =    322923^{2} \cdot 29^{2}
Sign: 11
Analytic conductor: 60.438760.4387
Root analytic conductor: 7.774237.77423
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 7569, ( :1/2), 1)(2,\ 7569,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 0.86968809390.8696880939
L(12)L(\frac12) \approx 0.86968809390.8696880939
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
29 1 1
good2 1+2.08T+2T2 1 + 2.08T + 2T^{2}
5 1+0.992T+5T2 1 + 0.992T + 5T^{2}
7 12.45T+7T2 1 - 2.45T + 7T^{2}
11 1+0.745T+11T2 1 + 0.745T + 11T^{2}
13 10.730T+13T2 1 - 0.730T + 13T^{2}
17 14.76T+17T2 1 - 4.76T + 17T^{2}
19 11.38T+19T2 1 - 1.38T + 19T^{2}
23 1+5.31T+23T2 1 + 5.31T + 23T^{2}
31 1+0.563T+31T2 1 + 0.563T + 31T^{2}
37 19.49T+37T2 1 - 9.49T + 37T^{2}
41 1+5.63T+41T2 1 + 5.63T + 41T^{2}
43 111.0T+43T2 1 - 11.0T + 43T^{2}
47 1+11.3T+47T2 1 + 11.3T + 47T^{2}
53 1+4.53T+53T2 1 + 4.53T + 53T^{2}
59 1+8.54T+59T2 1 + 8.54T + 59T^{2}
61 18.56T+61T2 1 - 8.56T + 61T^{2}
67 111.0T+67T2 1 - 11.0T + 67T^{2}
71 16.10T+71T2 1 - 6.10T + 71T^{2}
73 15.41T+73T2 1 - 5.41T + 73T^{2}
79 1+7.67T+79T2 1 + 7.67T + 79T^{2}
83 115.9T+83T2 1 - 15.9T + 83T^{2}
89 19.90T+89T2 1 - 9.90T + 89T^{2}
97 113.5T+97T2 1 - 13.5T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.943809846727732321762144843510, −7.74082513739303497250677872428, −6.76166742667370761071829255142, −5.94782559943401513647460228843, −5.10197189765695836699658790847, −4.30463536217657759912324231394, −3.44955369932712184545139997826, −2.29529959927873990136212201101, −1.52832090849494420631448839289, −0.61915879484559102634809750169, 0.61915879484559102634809750169, 1.52832090849494420631448839289, 2.29529959927873990136212201101, 3.44955369932712184545139997826, 4.30463536217657759912324231394, 5.10197189765695836699658790847, 5.94782559943401513647460228843, 6.76166742667370761071829255142, 7.74082513739303497250677872428, 7.943809846727732321762144843510

Graph of the ZZ-function along the critical line