L(s) = 1 | − 1.13·2-s − 0.714·4-s + 0.407·5-s + 2.15·7-s + 3.07·8-s − 0.461·10-s − 3.55·11-s − 0.0966·13-s − 2.44·14-s − 2.05·16-s − 0.587·17-s + 3.61·19-s − 0.291·20-s + 4.02·22-s − 8.26·23-s − 4.83·25-s + 0.109·26-s − 1.54·28-s − 1.67·31-s − 3.82·32-s + 0.665·34-s + 0.878·35-s + 0.0122·37-s − 4.10·38-s + 1.25·40-s + 9.57·41-s − 3.47·43-s + ⋯ |
L(s) = 1 | − 0.801·2-s − 0.357·4-s + 0.182·5-s + 0.815·7-s + 1.08·8-s − 0.145·10-s − 1.07·11-s − 0.0268·13-s − 0.653·14-s − 0.514·16-s − 0.142·17-s + 0.830·19-s − 0.0650·20-s + 0.858·22-s − 1.72·23-s − 0.966·25-s + 0.0214·26-s − 0.291·28-s − 0.301·31-s − 0.675·32-s + 0.114·34-s + 0.148·35-s + 0.00202·37-s − 0.665·38-s + 0.198·40-s + 1.49·41-s − 0.530·43-s + ⋯ |
Λ(s)=(=(7569s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7569s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9162989105 |
L(21) |
≈ |
0.9162989105 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1 |
good | 2 | 1+1.13T+2T2 |
| 5 | 1−0.407T+5T2 |
| 7 | 1−2.15T+7T2 |
| 11 | 1+3.55T+11T2 |
| 13 | 1+0.0966T+13T2 |
| 17 | 1+0.587T+17T2 |
| 19 | 1−3.61T+19T2 |
| 23 | 1+8.26T+23T2 |
| 31 | 1+1.67T+31T2 |
| 37 | 1−0.0122T+37T2 |
| 41 | 1−9.57T+41T2 |
| 43 | 1+3.47T+43T2 |
| 47 | 1+3.31T+47T2 |
| 53 | 1+6.88T+53T2 |
| 59 | 1−6.45T+59T2 |
| 61 | 1−9.67T+61T2 |
| 67 | 1−8.02T+67T2 |
| 71 | 1−9.30T+71T2 |
| 73 | 1−9.28T+73T2 |
| 79 | 1−11.0T+79T2 |
| 83 | 1+12.8T+83T2 |
| 89 | 1+2.23T+89T2 |
| 97 | 1+5.72T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.962804554713970590171740883939, −7.62527128958780248315524806817, −6.63273018605150687646677304493, −5.60233745632645068824528821067, −5.17857814466151424707271668323, −4.35810318471914091253424672550, −3.62992164238184430924244322196, −2.35267056768649447646175877615, −1.70924272134575210928263780891, −0.54797940048731320516837461728,
0.54797940048731320516837461728, 1.70924272134575210928263780891, 2.35267056768649447646175877615, 3.62992164238184430924244322196, 4.35810318471914091253424672550, 5.17857814466151424707271668323, 5.60233745632645068824528821067, 6.63273018605150687646677304493, 7.62527128958780248315524806817, 7.962804554713970590171740883939