Properties

Label 2-87e2-1.1-c1-0-43
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.83·2-s + 1.36·4-s + 2.25·5-s − 0.744·7-s + 1.16·8-s − 4.14·10-s − 6.30·11-s − 1.64·13-s + 1.36·14-s − 4.86·16-s − 4.16·17-s + 1.04·19-s + 3.08·20-s + 11.5·22-s + 4.57·23-s + 0.100·25-s + 3.01·26-s − 1.01·28-s − 3.53·31-s + 6.60·32-s + 7.64·34-s − 1.68·35-s − 1.07·37-s − 1.90·38-s + 2.62·40-s + 1.20·41-s − 12.8·43-s + ⋯
L(s)  = 1  − 1.29·2-s + 0.683·4-s + 1.01·5-s − 0.281·7-s + 0.411·8-s − 1.31·10-s − 1.90·11-s − 0.456·13-s + 0.364·14-s − 1.21·16-s − 1.01·17-s + 0.238·19-s + 0.689·20-s + 2.46·22-s + 0.953·23-s + 0.0201·25-s + 0.592·26-s − 0.192·28-s − 0.634·31-s + 1.16·32-s + 1.31·34-s − 0.284·35-s − 0.176·37-s − 0.309·38-s + 0.415·40-s + 0.187·41-s − 1.95·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5691872699\)
\(L(\frac12)\) \(\approx\) \(0.5691872699\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 + 1.83T + 2T^{2} \)
5 \( 1 - 2.25T + 5T^{2} \)
7 \( 1 + 0.744T + 7T^{2} \)
11 \( 1 + 6.30T + 11T^{2} \)
13 \( 1 + 1.64T + 13T^{2} \)
17 \( 1 + 4.16T + 17T^{2} \)
19 \( 1 - 1.04T + 19T^{2} \)
23 \( 1 - 4.57T + 23T^{2} \)
31 \( 1 + 3.53T + 31T^{2} \)
37 \( 1 + 1.07T + 37T^{2} \)
41 \( 1 - 1.20T + 41T^{2} \)
43 \( 1 + 12.8T + 43T^{2} \)
47 \( 1 - 7.88T + 47T^{2} \)
53 \( 1 - 13.1T + 53T^{2} \)
59 \( 1 + 11.0T + 59T^{2} \)
61 \( 1 + 6.44T + 61T^{2} \)
67 \( 1 + 6.87T + 67T^{2} \)
71 \( 1 - 3.27T + 71T^{2} \)
73 \( 1 - 7.09T + 73T^{2} \)
79 \( 1 - 6.38T + 79T^{2} \)
83 \( 1 - 5.15T + 83T^{2} \)
89 \( 1 + 9.31T + 89T^{2} \)
97 \( 1 + 15.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.979826318912860520544191456228, −7.31666833259966518142164801982, −6.78112065584042566795983837303, −5.83264945669465112251807418350, −5.14798609332655718258099791678, −4.56217328703907305928760827145, −3.15851709053142453697335680255, −2.35446360535370328444529632957, −1.76814497460022526539607501279, −0.44373090913206291325624697759, 0.44373090913206291325624697759, 1.76814497460022526539607501279, 2.35446360535370328444529632957, 3.15851709053142453697335680255, 4.56217328703907305928760827145, 5.14798609332655718258099791678, 5.83264945669465112251807418350, 6.78112065584042566795983837303, 7.31666833259966518142164801982, 7.979826318912860520544191456228

Graph of the $Z$-function along the critical line