Properties

Label 2-87e2-1.1-c1-0-242
Degree $2$
Conductor $7569$
Sign $-1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 4.63·7-s − 5.69·13-s + 4·16-s + 4.28·19-s − 5·25-s − 9.26·28-s − 8.64·31-s + 11.9·37-s − 13.0·43-s + 14.4·49-s + 11.3·52-s − 4.21·61-s − 8·64-s − 1.77·67-s − 16.2·73-s − 8.56·76-s − 3.39·79-s − 26.3·91-s − 17.5·97-s + 10·100-s + 2.88·103-s + 16.7·109-s + 18.5·112-s + ⋯
L(s)  = 1  − 4-s + 1.75·7-s − 1.57·13-s + 16-s + 0.982·19-s − 25-s − 1.75·28-s − 1.55·31-s + 1.96·37-s − 1.99·43-s + 2.06·49-s + 1.57·52-s − 0.540·61-s − 64-s − 0.216·67-s − 1.90·73-s − 0.982·76-s − 0.381·79-s − 2.76·91-s − 1.77·97-s + 100-s + 0.284·103-s + 1.60·109-s + 1.75·112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 + 2T^{2} \)
5 \( 1 + 5T^{2} \)
7 \( 1 - 4.63T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 5.69T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 4.28T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
31 \( 1 + 8.64T + 31T^{2} \)
37 \( 1 - 11.9T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 13.0T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 4.21T + 61T^{2} \)
67 \( 1 + 1.77T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 16.2T + 73T^{2} \)
79 \( 1 + 3.39T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 17.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66346692297959276880566685506, −7.17746938006072002728213330433, −5.80301203246656688854737903269, −5.30432906245248856915194150942, −4.69190740101543008274899999648, −4.22779291434716124932379545367, −3.18458874315738660889833243891, −2.10436212484739088754172804614, −1.28486526853184290613784953983, 0, 1.28486526853184290613784953983, 2.10436212484739088754172804614, 3.18458874315738660889833243891, 4.22779291434716124932379545367, 4.69190740101543008274899999648, 5.30432906245248856915194150942, 5.80301203246656688854737903269, 7.17746938006072002728213330433, 7.66346692297959276880566685506

Graph of the $Z$-function along the critical line