L(s) = 1 | − 2·4-s + 4.63·7-s − 5.69·13-s + 4·16-s + 4.28·19-s − 5·25-s − 9.26·28-s − 8.64·31-s + 11.9·37-s − 13.0·43-s + 14.4·49-s + 11.3·52-s − 4.21·61-s − 8·64-s − 1.77·67-s − 16.2·73-s − 8.56·76-s − 3.39·79-s − 26.3·91-s − 17.5·97-s + 10·100-s + 2.88·103-s + 16.7·109-s + 18.5·112-s + ⋯ |
L(s) = 1 | − 4-s + 1.75·7-s − 1.57·13-s + 16-s + 0.982·19-s − 25-s − 1.75·28-s − 1.55·31-s + 1.96·37-s − 1.99·43-s + 2.06·49-s + 1.57·52-s − 0.540·61-s − 64-s − 0.216·67-s − 1.90·73-s − 0.982·76-s − 0.381·79-s − 2.76·91-s − 1.77·97-s + 100-s + 0.284·103-s + 1.60·109-s + 1.75·112-s + ⋯ |
Λ(s)=(=(7569s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7569s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1 |
good | 2 | 1+2T2 |
| 5 | 1+5T2 |
| 7 | 1−4.63T+7T2 |
| 11 | 1+11T2 |
| 13 | 1+5.69T+13T2 |
| 17 | 1+17T2 |
| 19 | 1−4.28T+19T2 |
| 23 | 1+23T2 |
| 31 | 1+8.64T+31T2 |
| 37 | 1−11.9T+37T2 |
| 41 | 1+41T2 |
| 43 | 1+13.0T+43T2 |
| 47 | 1+47T2 |
| 53 | 1+53T2 |
| 59 | 1+59T2 |
| 61 | 1+4.21T+61T2 |
| 67 | 1+1.77T+67T2 |
| 71 | 1+71T2 |
| 73 | 1+16.2T+73T2 |
| 79 | 1+3.39T+79T2 |
| 83 | 1+83T2 |
| 89 | 1+89T2 |
| 97 | 1+17.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.66346692297959276880566685506, −7.17746938006072002728213330433, −5.80301203246656688854737903269, −5.30432906245248856915194150942, −4.69190740101543008274899999648, −4.22779291434716124932379545367, −3.18458874315738660889833243891, −2.10436212484739088754172804614, −1.28486526853184290613784953983, 0,
1.28486526853184290613784953983, 2.10436212484739088754172804614, 3.18458874315738660889833243891, 4.22779291434716124932379545367, 4.69190740101543008274899999648, 5.30432906245248856915194150942, 5.80301203246656688854737903269, 7.17746938006072002728213330433, 7.66346692297959276880566685506