Properties

Label 2-87e2-1.1-c1-0-22
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.618·2-s − 1.61·4-s − 3.85·5-s − 2.23·7-s + 2.23·8-s + 2.38·10-s + 1.38·11-s − 0.236·13-s + 1.38·14-s + 1.85·16-s + 4.38·17-s − 4.85·19-s + 6.23·20-s − 0.854·22-s + 1.23·23-s + 9.85·25-s + 0.145·26-s + 3.61·28-s − 10.0·31-s − 5.61·32-s − 2.70·34-s + 8.61·35-s + 4.70·37-s + 3.00·38-s − 8.61·40-s − 3.85·41-s − 7.23·43-s + ⋯
L(s)  = 1  − 0.437·2-s − 0.809·4-s − 1.72·5-s − 0.845·7-s + 0.790·8-s + 0.753·10-s + 0.416·11-s − 0.0654·13-s + 0.369·14-s + 0.463·16-s + 1.06·17-s − 1.11·19-s + 1.39·20-s − 0.182·22-s + 0.257·23-s + 1.97·25-s + 0.0286·26-s + 0.683·28-s − 1.81·31-s − 0.993·32-s − 0.464·34-s + 1.45·35-s + 0.774·37-s + 0.486·38-s − 1.36·40-s − 0.601·41-s − 1.10·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2709623026\)
\(L(\frac12)\) \(\approx\) \(0.2709623026\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 + 0.618T + 2T^{2} \)
5 \( 1 + 3.85T + 5T^{2} \)
7 \( 1 + 2.23T + 7T^{2} \)
11 \( 1 - 1.38T + 11T^{2} \)
13 \( 1 + 0.236T + 13T^{2} \)
17 \( 1 - 4.38T + 17T^{2} \)
19 \( 1 + 4.85T + 19T^{2} \)
23 \( 1 - 1.23T + 23T^{2} \)
31 \( 1 + 10.0T + 31T^{2} \)
37 \( 1 - 4.70T + 37T^{2} \)
41 \( 1 + 3.85T + 41T^{2} \)
43 \( 1 + 7.23T + 43T^{2} \)
47 \( 1 - 7T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 + 6.09T + 59T^{2} \)
61 \( 1 + 0.618T + 61T^{2} \)
67 \( 1 + 1.52T + 67T^{2} \)
71 \( 1 + 10.4T + 71T^{2} \)
73 \( 1 + 13.7T + 73T^{2} \)
79 \( 1 + 6.09T + 79T^{2} \)
83 \( 1 - 9.94T + 83T^{2} \)
89 \( 1 + 4.70T + 89T^{2} \)
97 \( 1 - 3.56T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83537674822379891727120988647, −7.44017077797015206223541996258, −6.72017767568210285323956542016, −5.78410466072182894272959827141, −4.88793211929119153623588473287, −4.13267674993182048909767688163, −3.68208429220805701304412300669, −3.00317137124081724324657105516, −1.43571576194055332557475879467, −0.29756994223083770618652804036, 0.29756994223083770618652804036, 1.43571576194055332557475879467, 3.00317137124081724324657105516, 3.68208429220805701304412300669, 4.13267674993182048909767688163, 4.88793211929119153623588473287, 5.78410466072182894272959827141, 6.72017767568210285323956542016, 7.44017077797015206223541996258, 7.83537674822379891727120988647

Graph of the $Z$-function along the critical line