L(s) = 1 | + 1.61·2-s + 0.618·4-s + 2.85·5-s + 2.23·7-s − 2.23·8-s + 4.61·10-s + 3.61·11-s + 4.23·13-s + 3.61·14-s − 4.85·16-s + 6.61·17-s + 1.85·19-s + 1.76·20-s + 5.85·22-s − 3.23·23-s + 3.14·25-s + 6.85·26-s + 1.38·28-s + 1.09·31-s − 3.38·32-s + 10.7·34-s + 6.38·35-s − 8.70·37-s + 3·38-s − 6.38·40-s + 2.85·41-s − 2.76·43-s + ⋯ |
L(s) = 1 | + 1.14·2-s + 0.309·4-s + 1.27·5-s + 0.845·7-s − 0.790·8-s + 1.46·10-s + 1.09·11-s + 1.17·13-s + 0.966·14-s − 1.21·16-s + 1.60·17-s + 0.425·19-s + 0.394·20-s + 1.24·22-s − 0.674·23-s + 0.629·25-s + 1.34·26-s + 0.261·28-s + 0.195·31-s − 0.597·32-s + 1.83·34-s + 1.07·35-s − 1.43·37-s + 0.486·38-s − 1.00·40-s + 0.445·41-s − 0.421·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.922540848\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.922540848\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 \) |
good | 2 | \( 1 - 1.61T + 2T^{2} \) |
| 5 | \( 1 - 2.85T + 5T^{2} \) |
| 7 | \( 1 - 2.23T + 7T^{2} \) |
| 11 | \( 1 - 3.61T + 11T^{2} \) |
| 13 | \( 1 - 4.23T + 13T^{2} \) |
| 17 | \( 1 - 6.61T + 17T^{2} \) |
| 19 | \( 1 - 1.85T + 19T^{2} \) |
| 23 | \( 1 + 3.23T + 23T^{2} \) |
| 31 | \( 1 - 1.09T + 31T^{2} \) |
| 37 | \( 1 + 8.70T + 37T^{2} \) |
| 41 | \( 1 - 2.85T + 41T^{2} \) |
| 43 | \( 1 + 2.76T + 43T^{2} \) |
| 47 | \( 1 - 7T + 47T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 - 5.09T + 59T^{2} \) |
| 61 | \( 1 - 1.61T + 61T^{2} \) |
| 67 | \( 1 + 10.4T + 67T^{2} \) |
| 71 | \( 1 + 1.52T + 71T^{2} \) |
| 73 | \( 1 + 0.291T + 73T^{2} \) |
| 79 | \( 1 - 5.09T + 79T^{2} \) |
| 83 | \( 1 + 7.94T + 83T^{2} \) |
| 89 | \( 1 - 8.70T + 89T^{2} \) |
| 97 | \( 1 + 16.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.88459943534720628157692914467, −6.84037561779015388678618355210, −6.22673600252947180946836472461, −5.53140973067693156846699179620, −5.35783377548697195677269349012, −4.26173422144343011549242531135, −3.70633238115869278558748447001, −2.90569629734524821377489212328, −1.78482537912958157657611169535, −1.17282855779647595164503915840,
1.17282855779647595164503915840, 1.78482537912958157657611169535, 2.90569629734524821377489212328, 3.70633238115869278558748447001, 4.26173422144343011549242531135, 5.35783377548697195677269349012, 5.53140973067693156846699179620, 6.22673600252947180946836472461, 6.84037561779015388678618355210, 7.88459943534720628157692914467