Properties

Label 2-87e2-1.1-c1-0-219
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.61·2-s + 0.618·4-s + 2.85·5-s + 2.23·7-s − 2.23·8-s + 4.61·10-s + 3.61·11-s + 4.23·13-s + 3.61·14-s − 4.85·16-s + 6.61·17-s + 1.85·19-s + 1.76·20-s + 5.85·22-s − 3.23·23-s + 3.14·25-s + 6.85·26-s + 1.38·28-s + 1.09·31-s − 3.38·32-s + 10.7·34-s + 6.38·35-s − 8.70·37-s + 3·38-s − 6.38·40-s + 2.85·41-s − 2.76·43-s + ⋯
L(s)  = 1  + 1.14·2-s + 0.309·4-s + 1.27·5-s + 0.845·7-s − 0.790·8-s + 1.46·10-s + 1.09·11-s + 1.17·13-s + 0.966·14-s − 1.21·16-s + 1.60·17-s + 0.425·19-s + 0.394·20-s + 1.24·22-s − 0.674·23-s + 0.629·25-s + 1.34·26-s + 0.261·28-s + 0.195·31-s − 0.597·32-s + 1.83·34-s + 1.07·35-s − 1.43·37-s + 0.486·38-s − 1.00·40-s + 0.445·41-s − 0.421·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.922540848\)
\(L(\frac12)\) \(\approx\) \(5.922540848\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 - 1.61T + 2T^{2} \)
5 \( 1 - 2.85T + 5T^{2} \)
7 \( 1 - 2.23T + 7T^{2} \)
11 \( 1 - 3.61T + 11T^{2} \)
13 \( 1 - 4.23T + 13T^{2} \)
17 \( 1 - 6.61T + 17T^{2} \)
19 \( 1 - 1.85T + 19T^{2} \)
23 \( 1 + 3.23T + 23T^{2} \)
31 \( 1 - 1.09T + 31T^{2} \)
37 \( 1 + 8.70T + 37T^{2} \)
41 \( 1 - 2.85T + 41T^{2} \)
43 \( 1 + 2.76T + 43T^{2} \)
47 \( 1 - 7T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 - 5.09T + 59T^{2} \)
61 \( 1 - 1.61T + 61T^{2} \)
67 \( 1 + 10.4T + 67T^{2} \)
71 \( 1 + 1.52T + 71T^{2} \)
73 \( 1 + 0.291T + 73T^{2} \)
79 \( 1 - 5.09T + 79T^{2} \)
83 \( 1 + 7.94T + 83T^{2} \)
89 \( 1 - 8.70T + 89T^{2} \)
97 \( 1 + 16.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88459943534720628157692914467, −6.84037561779015388678618355210, −6.22673600252947180946836472461, −5.53140973067693156846699179620, −5.35783377548697195677269349012, −4.26173422144343011549242531135, −3.70633238115869278558748447001, −2.90569629734524821377489212328, −1.78482537912958157657611169535, −1.17282855779647595164503915840, 1.17282855779647595164503915840, 1.78482537912958157657611169535, 2.90569629734524821377489212328, 3.70633238115869278558748447001, 4.26173422144343011549242531135, 5.35783377548697195677269349012, 5.53140973067693156846699179620, 6.22673600252947180946836472461, 6.84037561779015388678618355210, 7.88459943534720628157692914467

Graph of the $Z$-function along the critical line