L(s) = 1 | + 1.61·2-s + 0.618·4-s + 2.85·5-s + 2.23·7-s − 2.23·8-s + 4.61·10-s + 3.61·11-s + 4.23·13-s + 3.61·14-s − 4.85·16-s + 6.61·17-s + 1.85·19-s + 1.76·20-s + 5.85·22-s − 3.23·23-s + 3.14·25-s + 6.85·26-s + 1.38·28-s + 1.09·31-s − 3.38·32-s + 10.7·34-s + 6.38·35-s − 8.70·37-s + 3·38-s − 6.38·40-s + 2.85·41-s − 2.76·43-s + ⋯ |
L(s) = 1 | + 1.14·2-s + 0.309·4-s + 1.27·5-s + 0.845·7-s − 0.790·8-s + 1.46·10-s + 1.09·11-s + 1.17·13-s + 0.966·14-s − 1.21·16-s + 1.60·17-s + 0.425·19-s + 0.394·20-s + 1.24·22-s − 0.674·23-s + 0.629·25-s + 1.34·26-s + 0.261·28-s + 0.195·31-s − 0.597·32-s + 1.83·34-s + 1.07·35-s − 1.43·37-s + 0.486·38-s − 1.00·40-s + 0.445·41-s − 0.421·43-s + ⋯ |
Λ(s)=(=(7569s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7569s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
5.922540848 |
L(21) |
≈ |
5.922540848 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1 |
good | 2 | 1−1.61T+2T2 |
| 5 | 1−2.85T+5T2 |
| 7 | 1−2.23T+7T2 |
| 11 | 1−3.61T+11T2 |
| 13 | 1−4.23T+13T2 |
| 17 | 1−6.61T+17T2 |
| 19 | 1−1.85T+19T2 |
| 23 | 1+3.23T+23T2 |
| 31 | 1−1.09T+31T2 |
| 37 | 1+8.70T+37T2 |
| 41 | 1−2.85T+41T2 |
| 43 | 1+2.76T+43T2 |
| 47 | 1−7T+47T2 |
| 53 | 1−2T+53T2 |
| 59 | 1−5.09T+59T2 |
| 61 | 1−1.61T+61T2 |
| 67 | 1+10.4T+67T2 |
| 71 | 1+1.52T+71T2 |
| 73 | 1+0.291T+73T2 |
| 79 | 1−5.09T+79T2 |
| 83 | 1+7.94T+83T2 |
| 89 | 1−8.70T+89T2 |
| 97 | 1+16.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.88459943534720628157692914467, −6.84037561779015388678618355210, −6.22673600252947180946836472461, −5.53140973067693156846699179620, −5.35783377548697195677269349012, −4.26173422144343011549242531135, −3.70633238115869278558748447001, −2.90569629734524821377489212328, −1.78482537912958157657611169535, −1.17282855779647595164503915840,
1.17282855779647595164503915840, 1.78482537912958157657611169535, 2.90569629734524821377489212328, 3.70633238115869278558748447001, 4.26173422144343011549242531135, 5.35783377548697195677269349012, 5.53140973067693156846699179620, 6.22673600252947180946836472461, 6.84037561779015388678618355210, 7.88459943534720628157692914467