L(s) = 1 | − 1.15·2-s − 0.667·4-s + 3.44·5-s + 4.51·7-s + 3.07·8-s − 3.98·10-s + 0.554·11-s + 2.75·13-s − 5.21·14-s − 2.21·16-s + 2.99·17-s − 0.278·19-s − 2.30·20-s − 0.639·22-s − 0.927·23-s + 6.89·25-s − 3.18·26-s − 3.01·28-s + 9.12·31-s − 3.59·32-s − 3.45·34-s + 15.5·35-s − 6.87·37-s + 0.321·38-s + 10.6·40-s + 2.85·41-s − 11.2·43-s + ⋯ |
L(s) = 1 | − 0.816·2-s − 0.333·4-s + 1.54·5-s + 1.70·7-s + 1.08·8-s − 1.25·10-s + 0.167·11-s + 0.765·13-s − 1.39·14-s − 0.554·16-s + 0.726·17-s − 0.0638·19-s − 0.514·20-s − 0.136·22-s − 0.193·23-s + 1.37·25-s − 0.624·26-s − 0.569·28-s + 1.63·31-s − 0.635·32-s − 0.593·34-s + 2.63·35-s − 1.13·37-s + 0.0520·38-s + 1.67·40-s + 0.445·41-s − 1.71·43-s + ⋯ |
Λ(s)=(=(7569s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7569s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.386514836 |
L(21) |
≈ |
2.386514836 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1 |
good | 2 | 1+1.15T+2T2 |
| 5 | 1−3.44T+5T2 |
| 7 | 1−4.51T+7T2 |
| 11 | 1−0.554T+11T2 |
| 13 | 1−2.75T+13T2 |
| 17 | 1−2.99T+17T2 |
| 19 | 1+0.278T+19T2 |
| 23 | 1+0.927T+23T2 |
| 31 | 1−9.12T+31T2 |
| 37 | 1+6.87T+37T2 |
| 41 | 1−2.85T+41T2 |
| 43 | 1+11.2T+43T2 |
| 47 | 1+4.19T+47T2 |
| 53 | 1−2.07T+53T2 |
| 59 | 1−14.2T+59T2 |
| 61 | 1+7.23T+61T2 |
| 67 | 1+12.2T+67T2 |
| 71 | 1−2.38T+71T2 |
| 73 | 1+0.913T+73T2 |
| 79 | 1−2.06T+79T2 |
| 83 | 1−10.9T+83T2 |
| 89 | 1−6.80T+89T2 |
| 97 | 1+3.51T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.156776127075500786389965093130, −7.40066314358144070447698494444, −6.49077659362897102245790593901, −5.75036739227558090743025034871, −5.03670189713552388540652349546, −4.62112533165619204994759912178, −3.51963730269687316593241819313, −2.21897371772611866937310066631, −1.56890303528569594701398545878, −1.01543328522474359073883645238,
1.01543328522474359073883645238, 1.56890303528569594701398545878, 2.21897371772611866937310066631, 3.51963730269687316593241819313, 4.62112533165619204994759912178, 5.03670189713552388540652349546, 5.75036739227558090743025034871, 6.49077659362897102245790593901, 7.40066314358144070447698494444, 8.156776127075500786389965093130