L(s) = 1 | − 2.30·2-s + 3.33·4-s + 3.03·5-s − 4.39·7-s − 3.07·8-s − 7.01·10-s + 5.68·11-s + 3.95·13-s + 10.1·14-s + 0.441·16-s + 3.21·17-s + 3.61·19-s + 10.1·20-s − 13.1·22-s + 2.69·23-s + 4.21·25-s − 9.12·26-s − 14.6·28-s + 0.823·31-s + 5.13·32-s − 7.42·34-s − 13.3·35-s + 5.60·37-s − 8.35·38-s − 9.34·40-s − 0.558·41-s + 12.7·43-s + ⋯ |
L(s) = 1 | − 1.63·2-s + 1.66·4-s + 1.35·5-s − 1.66·7-s − 1.08·8-s − 2.21·10-s + 1.71·11-s + 1.09·13-s + 2.71·14-s + 0.110·16-s + 0.780·17-s + 0.830·19-s + 2.26·20-s − 2.79·22-s + 0.562·23-s + 0.843·25-s − 1.78·26-s − 2.76·28-s + 0.147·31-s + 0.907·32-s − 1.27·34-s − 2.25·35-s + 0.921·37-s − 1.35·38-s − 1.47·40-s − 0.0872·41-s + 1.93·43-s + ⋯ |
Λ(s)=(=(7569s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7569s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.387249570 |
L(21) |
≈ |
1.387249570 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1 |
good | 2 | 1+2.30T+2T2 |
| 5 | 1−3.03T+5T2 |
| 7 | 1+4.39T+7T2 |
| 11 | 1−5.68T+11T2 |
| 13 | 1−3.95T+13T2 |
| 17 | 1−3.21T+17T2 |
| 19 | 1−3.61T+19T2 |
| 23 | 1−2.69T+23T2 |
| 31 | 1−0.823T+31T2 |
| 37 | 1−5.60T+37T2 |
| 41 | 1+0.558T+41T2 |
| 43 | 1−12.7T+43T2 |
| 47 | 1+0.129T+47T2 |
| 53 | 1+6.88T+53T2 |
| 59 | 1−0.745T+59T2 |
| 61 | 1−7.17T+61T2 |
| 67 | 1−7.06T+67T2 |
| 71 | 1−12.6T+71T2 |
| 73 | 1+8.81T+73T2 |
| 79 | 1−6.99T+79T2 |
| 83 | 1+8.90T+83T2 |
| 89 | 1+1.51T+89T2 |
| 97 | 1+14.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.048553425958415110475721728287, −7.10053333789112670761537730720, −6.58505865383784042485928501711, −6.14626728933147170142281301332, −5.55999922590262892004939872348, −4.06084747751950742430034703873, −3.25587017742218836587592774088, −2.43831319009164804275880040193, −1.32718891362557278936359078297, −0.891200533339698870697225726519,
0.891200533339698870697225726519, 1.32718891362557278936359078297, 2.43831319009164804275880040193, 3.25587017742218836587592774088, 4.06084747751950742430034703873, 5.55999922590262892004939872348, 6.14626728933147170142281301332, 6.58505865383784042485928501711, 7.10053333789112670761537730720, 8.048553425958415110475721728287