Properties

Label 2-87e2-1.1-c1-0-105
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.183·2-s − 1.96·4-s + 3.26·5-s − 0.215·7-s + 0.726·8-s − 0.597·10-s − 2.92·11-s − 3.58·13-s + 0.0394·14-s + 3.79·16-s + 7.11·17-s + 1.38·19-s − 6.41·20-s + 0.535·22-s + 6.71·23-s + 5.63·25-s + 0.656·26-s + 0.423·28-s + 6.41·31-s − 2.14·32-s − 1.30·34-s − 0.702·35-s − 6.11·37-s − 0.253·38-s + 2.36·40-s + 6.50·41-s − 6.24·43-s + ⋯
L(s)  = 1  − 0.129·2-s − 0.983·4-s + 1.45·5-s − 0.0813·7-s + 0.256·8-s − 0.188·10-s − 0.881·11-s − 0.994·13-s + 0.0105·14-s + 0.949·16-s + 1.72·17-s + 0.317·19-s − 1.43·20-s + 0.114·22-s + 1.40·23-s + 1.12·25-s + 0.128·26-s + 0.0800·28-s + 1.15·31-s − 0.379·32-s − 0.223·34-s − 0.118·35-s − 1.00·37-s − 0.0410·38-s + 0.374·40-s + 1.01·41-s − 0.952·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.917379213\)
\(L(\frac12)\) \(\approx\) \(1.917379213\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 + 0.183T + 2T^{2} \)
5 \( 1 - 3.26T + 5T^{2} \)
7 \( 1 + 0.215T + 7T^{2} \)
11 \( 1 + 2.92T + 11T^{2} \)
13 \( 1 + 3.58T + 13T^{2} \)
17 \( 1 - 7.11T + 17T^{2} \)
19 \( 1 - 1.38T + 19T^{2} \)
23 \( 1 - 6.71T + 23T^{2} \)
31 \( 1 - 6.41T + 31T^{2} \)
37 \( 1 + 6.11T + 37T^{2} \)
41 \( 1 - 6.50T + 41T^{2} \)
43 \( 1 + 6.24T + 43T^{2} \)
47 \( 1 - 9.04T + 47T^{2} \)
53 \( 1 + 4.53T + 53T^{2} \)
59 \( 1 + 12.0T + 59T^{2} \)
61 \( 1 - 1.58T + 61T^{2} \)
67 \( 1 + 7.18T + 67T^{2} \)
71 \( 1 - 13.4T + 71T^{2} \)
73 \( 1 + 13.8T + 73T^{2} \)
79 \( 1 + 3.35T + 79T^{2} \)
83 \( 1 - 5.23T + 83T^{2} \)
89 \( 1 - 12.9T + 89T^{2} \)
97 \( 1 - 3.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80834662326833449050351636504, −7.39498508216891641195528104096, −6.32815192246337735143905201295, −5.62016124008237595646927483670, −5.10015249548206518087687174302, −4.67541631078150860543762943081, −3.30658448986381622381857510957, −2.78854821328600252291656389107, −1.67368061418384315615505288318, −0.74042989821156927320148775086, 0.74042989821156927320148775086, 1.67368061418384315615505288318, 2.78854821328600252291656389107, 3.30658448986381622381857510957, 4.67541631078150860543762943081, 5.10015249548206518087687174302, 5.62016124008237595646927483670, 6.32815192246337735143905201295, 7.39498508216891641195528104096, 7.80834662326833449050351636504

Graph of the $Z$-function along the critical line