L(s) = 1 | − 0.183·2-s − 1.96·4-s + 3.26·5-s − 0.215·7-s + 0.726·8-s − 0.597·10-s − 2.92·11-s − 3.58·13-s + 0.0394·14-s + 3.79·16-s + 7.11·17-s + 1.38·19-s − 6.41·20-s + 0.535·22-s + 6.71·23-s + 5.63·25-s + 0.656·26-s + 0.423·28-s + 6.41·31-s − 2.14·32-s − 1.30·34-s − 0.702·35-s − 6.11·37-s − 0.253·38-s + 2.36·40-s + 6.50·41-s − 6.24·43-s + ⋯ |
L(s) = 1 | − 0.129·2-s − 0.983·4-s + 1.45·5-s − 0.0813·7-s + 0.256·8-s − 0.188·10-s − 0.881·11-s − 0.994·13-s + 0.0105·14-s + 0.949·16-s + 1.72·17-s + 0.317·19-s − 1.43·20-s + 0.114·22-s + 1.40·23-s + 1.12·25-s + 0.128·26-s + 0.0800·28-s + 1.15·31-s − 0.379·32-s − 0.223·34-s − 0.118·35-s − 1.00·37-s − 0.0410·38-s + 0.374·40-s + 1.01·41-s − 0.952·43-s + ⋯ |
Λ(s)=(=(7569s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7569s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.917379213 |
L(21) |
≈ |
1.917379213 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1 |
good | 2 | 1+0.183T+2T2 |
| 5 | 1−3.26T+5T2 |
| 7 | 1+0.215T+7T2 |
| 11 | 1+2.92T+11T2 |
| 13 | 1+3.58T+13T2 |
| 17 | 1−7.11T+17T2 |
| 19 | 1−1.38T+19T2 |
| 23 | 1−6.71T+23T2 |
| 31 | 1−6.41T+31T2 |
| 37 | 1+6.11T+37T2 |
| 41 | 1−6.50T+41T2 |
| 43 | 1+6.24T+43T2 |
| 47 | 1−9.04T+47T2 |
| 53 | 1+4.53T+53T2 |
| 59 | 1+12.0T+59T2 |
| 61 | 1−1.58T+61T2 |
| 67 | 1+7.18T+67T2 |
| 71 | 1−13.4T+71T2 |
| 73 | 1+13.8T+73T2 |
| 79 | 1+3.35T+79T2 |
| 83 | 1−5.23T+83T2 |
| 89 | 1−12.9T+89T2 |
| 97 | 1−3.92T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80834662326833449050351636504, −7.39498508216891641195528104096, −6.32815192246337735143905201295, −5.62016124008237595646927483670, −5.10015249548206518087687174302, −4.67541631078150860543762943081, −3.30658448986381622381857510957, −2.78854821328600252291656389107, −1.67368061418384315615505288318, −0.74042989821156927320148775086,
0.74042989821156927320148775086, 1.67368061418384315615505288318, 2.78854821328600252291656389107, 3.30658448986381622381857510957, 4.67541631078150860543762943081, 5.10015249548206518087687174302, 5.62016124008237595646927483670, 6.32815192246337735143905201295, 7.39498508216891641195528104096, 7.80834662326833449050351636504