L(s) = 1 | + (0.0321 + 0.140i)2-s + (−0.900 − 0.433i)3-s + (1.78 − 0.858i)4-s + (−0.345 − 1.51i)5-s + (0.0321 − 0.140i)6-s + (1.37 + 0.662i)7-s + (0.358 + 0.449i)8-s + (0.623 + 0.781i)9-s + (0.202 − 0.0973i)10-s + (−0.478 + 0.600i)11-s − 1.97·12-s + (−1.63 + 2.04i)13-s + (−0.0490 + 0.215i)14-s + (−0.345 + 1.51i)15-s + (2.41 − 3.02i)16-s − 3.51·17-s + ⋯ |
L(s) = 1 | + (0.0227 + 0.0995i)2-s + (−0.520 − 0.250i)3-s + (0.891 − 0.429i)4-s + (−0.154 − 0.677i)5-s + (0.0131 − 0.0574i)6-s + (0.520 + 0.250i)7-s + (0.126 + 0.158i)8-s + (0.207 + 0.260i)9-s + (0.0639 − 0.0307i)10-s + (−0.144 + 0.181i)11-s − 0.571·12-s + (−0.452 + 0.567i)13-s + (−0.0131 + 0.0574i)14-s + (−0.0892 + 0.391i)15-s + (0.604 − 0.757i)16-s − 0.852·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(0.894+0.446i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(0.894+0.446i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
0.894+0.446i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), 0.894+0.446i)
|
Particular Values
L(1) |
≈ |
0.966207−0.227907i |
L(21) |
≈ |
0.966207−0.227907i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.900+0.433i)T |
| 29 | 1+(−3.40+4.17i)T |
good | 2 | 1+(−0.0321−0.140i)T+(−1.80+0.867i)T2 |
| 5 | 1+(0.345+1.51i)T+(−4.50+2.16i)T2 |
| 7 | 1+(−1.37−0.662i)T+(4.36+5.47i)T2 |
| 11 | 1+(0.478−0.600i)T+(−2.44−10.7i)T2 |
| 13 | 1+(1.63−2.04i)T+(−2.89−12.6i)T2 |
| 17 | 1+3.51T+17T2 |
| 19 | 1+(4.72−2.27i)T+(11.8−14.8i)T2 |
| 23 | 1+(1.89−8.28i)T+(−20.7−9.97i)T2 |
| 31 | 1+(−0.315−1.38i)T+(−27.9+13.4i)T2 |
| 37 | 1+(1.87+2.35i)T+(−8.23+36.0i)T2 |
| 41 | 1−5.79T+41T2 |
| 43 | 1+(0.955−4.18i)T+(−38.7−18.6i)T2 |
| 47 | 1+(−1.10+1.38i)T+(−10.4−45.8i)T2 |
| 53 | 1+(1.50+6.60i)T+(−47.7+22.9i)T2 |
| 59 | 1−14.9T+59T2 |
| 61 | 1+(12.3+5.95i)T+(38.0+47.6i)T2 |
| 67 | 1+(4.54+5.70i)T+(−14.9+65.3i)T2 |
| 71 | 1+(2.99−3.76i)T+(−15.7−69.2i)T2 |
| 73 | 1+(2.04−8.96i)T+(−65.7−31.6i)T2 |
| 79 | 1+(−0.340−0.426i)T+(−17.5+77.0i)T2 |
| 83 | 1+(10.4−5.05i)T+(51.7−64.8i)T2 |
| 89 | 1+(3.06+13.4i)T+(−80.1+38.6i)T2 |
| 97 | 1+(−1.60+0.770i)T+(60.4−75.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.22963467935774868816824210424, −12.84320591958800579238552009190, −11.85508620145153438733724530841, −11.13295682263897489253077756894, −9.874168875943196710144665590460, −8.356993459956776412929883665482, −7.10558541090672038179450544680, −5.89706204145986040926853953899, −4.64887843044907221215178461780, −1.92334256256028243820663637251,
2.67901717903275616668530623241, 4.47709277902001567762267936328, 6.30110974956992593324082866786, 7.22975190344445606786796815804, 8.544864067579210678659287418422, 10.62252392553050094239588145976, 10.75911588678619403186727746007, 12.00113659042793307969331366146, 12.95989344611590501622438245324, 14.55375078715726297853212233109