L(s) = 1 | + (0.596 − 2.61i)2-s + (0.900 − 0.433i)3-s + (−4.67 − 2.25i)4-s + (−0.692 + 3.03i)5-s + (−0.596 − 2.61i)6-s + (2.13 − 1.02i)7-s + (−5.32 + 6.68i)8-s + (0.623 − 0.781i)9-s + (7.51 + 3.61i)10-s + (1.62 + 2.03i)11-s − 5.18·12-s + (−1.43 − 1.80i)13-s + (−1.41 − 6.19i)14-s + (0.692 + 3.03i)15-s + (7.81 + 9.80i)16-s − 4.83·17-s + ⋯ |
L(s) = 1 | + (0.421 − 1.84i)2-s + (0.520 − 0.250i)3-s + (−2.33 − 1.12i)4-s + (−0.309 + 1.35i)5-s + (−0.243 − 1.06i)6-s + (0.807 − 0.388i)7-s + (−1.88 + 2.36i)8-s + (0.207 − 0.260i)9-s + (2.37 + 1.14i)10-s + (0.489 + 0.613i)11-s − 1.49·12-s + (−0.399 − 0.500i)13-s + (−0.377 − 1.65i)14-s + (0.178 + 0.783i)15-s + (1.95 + 2.45i)16-s − 1.17·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.543 + 0.839i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.543 + 0.839i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.567605 - 1.04317i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.567605 - 1.04317i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.900 + 0.433i)T \) |
| 29 | \( 1 + (-5.05 - 1.86i)T \) |
good | 2 | \( 1 + (-0.596 + 2.61i)T + (-1.80 - 0.867i)T^{2} \) |
| 5 | \( 1 + (0.692 - 3.03i)T + (-4.50 - 2.16i)T^{2} \) |
| 7 | \( 1 + (-2.13 + 1.02i)T + (4.36 - 5.47i)T^{2} \) |
| 11 | \( 1 + (-1.62 - 2.03i)T + (-2.44 + 10.7i)T^{2} \) |
| 13 | \( 1 + (1.43 + 1.80i)T + (-2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 + 4.83T + 17T^{2} \) |
| 19 | \( 1 + (1.47 + 0.710i)T + (11.8 + 14.8i)T^{2} \) |
| 23 | \( 1 + (-0.263 - 1.15i)T + (-20.7 + 9.97i)T^{2} \) |
| 31 | \( 1 + (1.28 - 5.63i)T + (-27.9 - 13.4i)T^{2} \) |
| 37 | \( 1 + (-4.30 + 5.39i)T + (-8.23 - 36.0i)T^{2} \) |
| 41 | \( 1 + 7.66T + 41T^{2} \) |
| 43 | \( 1 + (0.419 + 1.84i)T + (-38.7 + 18.6i)T^{2} \) |
| 47 | \( 1 + (5.79 + 7.27i)T + (-10.4 + 45.8i)T^{2} \) |
| 53 | \( 1 + (-1.15 + 5.04i)T + (-47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 + 4.90T + 59T^{2} \) |
| 61 | \( 1 + (-10.3 + 5.00i)T + (38.0 - 47.6i)T^{2} \) |
| 67 | \( 1 + (4.34 - 5.45i)T + (-14.9 - 65.3i)T^{2} \) |
| 71 | \( 1 + (-2.32 - 2.92i)T + (-15.7 + 69.2i)T^{2} \) |
| 73 | \( 1 + (0.532 + 2.33i)T + (-65.7 + 31.6i)T^{2} \) |
| 79 | \( 1 + (-2.34 + 2.93i)T + (-17.5 - 77.0i)T^{2} \) |
| 83 | \( 1 + (-9.54 - 4.59i)T + (51.7 + 64.8i)T^{2} \) |
| 89 | \( 1 + (-1.26 + 5.55i)T + (-80.1 - 38.6i)T^{2} \) |
| 97 | \( 1 + (15.1 + 7.28i)T + (60.4 + 75.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.73437766346699013638322099364, −12.62707780425592769190633463340, −11.53627588225444625585037759735, −10.80094571347772997344294808152, −9.937692601084918336223512194282, −8.547074224549717038125896281475, −6.95977393484443984075993531816, −4.68060400702176963914707979818, −3.39878355710959014789584512321, −2.09730961705240444748345141327,
4.27790468720207800230934456506, 4.94289481757606924129502933645, 6.40708763929686860673538073046, 7.989095101302902548308098827481, 8.576070669138318105499200333447, 9.335428144864701899625525865974, 11.75114440425857549769520759626, 12.96174536832155259188761446268, 13.79229880352355306982404814772, 14.77663531250962499054413475817