L(s) = 1 | + (0.596 − 2.61i)2-s + (0.900 − 0.433i)3-s + (−4.67 − 2.25i)4-s + (−0.692 + 3.03i)5-s + (−0.596 − 2.61i)6-s + (2.13 − 1.02i)7-s + (−5.32 + 6.68i)8-s + (0.623 − 0.781i)9-s + (7.51 + 3.61i)10-s + (1.62 + 2.03i)11-s − 5.18·12-s + (−1.43 − 1.80i)13-s + (−1.41 − 6.19i)14-s + (0.692 + 3.03i)15-s + (7.81 + 9.80i)16-s − 4.83·17-s + ⋯ |
L(s) = 1 | + (0.421 − 1.84i)2-s + (0.520 − 0.250i)3-s + (−2.33 − 1.12i)4-s + (−0.309 + 1.35i)5-s + (−0.243 − 1.06i)6-s + (0.807 − 0.388i)7-s + (−1.88 + 2.36i)8-s + (0.207 − 0.260i)9-s + (2.37 + 1.14i)10-s + (0.489 + 0.613i)11-s − 1.49·12-s + (−0.399 − 0.500i)13-s + (−0.377 − 1.65i)14-s + (0.178 + 0.783i)15-s + (1.95 + 2.45i)16-s − 1.17·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(−0.543+0.839i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(−0.543+0.839i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
−0.543+0.839i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), −0.543+0.839i)
|
Particular Values
L(1) |
≈ |
0.567605−1.04317i |
L(21) |
≈ |
0.567605−1.04317i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.900+0.433i)T |
| 29 | 1+(−5.05−1.86i)T |
good | 2 | 1+(−0.596+2.61i)T+(−1.80−0.867i)T2 |
| 5 | 1+(0.692−3.03i)T+(−4.50−2.16i)T2 |
| 7 | 1+(−2.13+1.02i)T+(4.36−5.47i)T2 |
| 11 | 1+(−1.62−2.03i)T+(−2.44+10.7i)T2 |
| 13 | 1+(1.43+1.80i)T+(−2.89+12.6i)T2 |
| 17 | 1+4.83T+17T2 |
| 19 | 1+(1.47+0.710i)T+(11.8+14.8i)T2 |
| 23 | 1+(−0.263−1.15i)T+(−20.7+9.97i)T2 |
| 31 | 1+(1.28−5.63i)T+(−27.9−13.4i)T2 |
| 37 | 1+(−4.30+5.39i)T+(−8.23−36.0i)T2 |
| 41 | 1+7.66T+41T2 |
| 43 | 1+(0.419+1.84i)T+(−38.7+18.6i)T2 |
| 47 | 1+(5.79+7.27i)T+(−10.4+45.8i)T2 |
| 53 | 1+(−1.15+5.04i)T+(−47.7−22.9i)T2 |
| 59 | 1+4.90T+59T2 |
| 61 | 1+(−10.3+5.00i)T+(38.0−47.6i)T2 |
| 67 | 1+(4.34−5.45i)T+(−14.9−65.3i)T2 |
| 71 | 1+(−2.32−2.92i)T+(−15.7+69.2i)T2 |
| 73 | 1+(0.532+2.33i)T+(−65.7+31.6i)T2 |
| 79 | 1+(−2.34+2.93i)T+(−17.5−77.0i)T2 |
| 83 | 1+(−9.54−4.59i)T+(51.7+64.8i)T2 |
| 89 | 1+(−1.26+5.55i)T+(−80.1−38.6i)T2 |
| 97 | 1+(15.1+7.28i)T+(60.4+75.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.73437766346699013638322099364, −12.62707780425592769190633463340, −11.53627588225444625585037759735, −10.80094571347772997344294808152, −9.937692601084918336223512194282, −8.547074224549717038125896281475, −6.95977393484443984075993531816, −4.68060400702176963914707979818, −3.39878355710959014789584512321, −2.09730961705240444748345141327,
4.27790468720207800230934456506, 4.94289481757606924129502933645, 6.40708763929686860673538073046, 7.989095101302902548308098827481, 8.576070669138318105499200333447, 9.335428144864701899625525865974, 11.75114440425857549769520759626, 12.96174536832155259188761446268, 13.79229880352355306982404814772, 14.77663531250962499054413475817