L(s) = 1 | + (−0.399 + 1.74i)2-s + (0.900 − 0.433i)3-s + (−1.10 − 0.529i)4-s + (−0.299 + 1.31i)5-s + (0.399 + 1.74i)6-s + (1.00 − 0.483i)7-s + (−0.871 + 1.09i)8-s + (0.623 − 0.781i)9-s + (−2.17 − 1.04i)10-s + (−1.53 − 1.93i)11-s − 1.22·12-s + (−1.75 − 2.20i)13-s + (0.444 + 1.94i)14-s + (0.299 + 1.31i)15-s + (−3.08 − 3.87i)16-s + 5.50·17-s + ⋯ |
L(s) = 1 | + (−0.282 + 1.23i)2-s + (0.520 − 0.250i)3-s + (−0.550 − 0.264i)4-s + (−0.133 + 0.586i)5-s + (0.163 + 0.714i)6-s + (0.379 − 0.182i)7-s + (−0.308 + 0.386i)8-s + (0.207 − 0.260i)9-s + (−0.687 − 0.331i)10-s + (−0.464 − 0.582i)11-s − 0.352·12-s + (−0.487 − 0.610i)13-s + (0.118 + 0.520i)14-s + (0.0772 + 0.338i)15-s + (−0.771 − 0.967i)16-s + 1.33·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(0.0372−0.999i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(0.0372−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
0.0372−0.999i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), 0.0372−0.999i)
|
Particular Values
L(1) |
≈ |
0.709558+0.683571i |
L(21) |
≈ |
0.709558+0.683571i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.900+0.433i)T |
| 29 | 1+(5.29−0.981i)T |
good | 2 | 1+(0.399−1.74i)T+(−1.80−0.867i)T2 |
| 5 | 1+(0.299−1.31i)T+(−4.50−2.16i)T2 |
| 7 | 1+(−1.00+0.483i)T+(4.36−5.47i)T2 |
| 11 | 1+(1.53+1.93i)T+(−2.44+10.7i)T2 |
| 13 | 1+(1.75+2.20i)T+(−2.89+12.6i)T2 |
| 17 | 1−5.50T+17T2 |
| 19 | 1+(−0.318−0.153i)T+(11.8+14.8i)T2 |
| 23 | 1+(1.18+5.18i)T+(−20.7+9.97i)T2 |
| 31 | 1+(−0.990+4.33i)T+(−27.9−13.4i)T2 |
| 37 | 1+(6.00−7.52i)T+(−8.23−36.0i)T2 |
| 41 | 1+9.05T+41T2 |
| 43 | 1+(−2.01−8.82i)T+(−38.7+18.6i)T2 |
| 47 | 1+(−2.24−2.81i)T+(−10.4+45.8i)T2 |
| 53 | 1+(−1.46+6.41i)T+(−47.7−22.9i)T2 |
| 59 | 1+6.26T+59T2 |
| 61 | 1+(0.106−0.0512i)T+(38.0−47.6i)T2 |
| 67 | 1+(−8.91+11.1i)T+(−14.9−65.3i)T2 |
| 71 | 1+(−4.68−5.86i)T+(−15.7+69.2i)T2 |
| 73 | 1+(−3.54−15.5i)T+(−65.7+31.6i)T2 |
| 79 | 1+(−0.160+0.200i)T+(−17.5−77.0i)T2 |
| 83 | 1+(−5.52−2.65i)T+(51.7+64.8i)T2 |
| 89 | 1+(1.66−7.31i)T+(−80.1−38.6i)T2 |
| 97 | 1+(6.37+3.07i)T+(60.4+75.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.66609146321388820445480692163, −13.89833404375414612127693639093, −12.49862358696200197818924384935, −11.14166482605076096030060578330, −9.833408095384208736425607964526, −8.314037887750172186842692903276, −7.73673413998218321588103746075, −6.63102492328295062507112919443, −5.28678870161059551461664721660, −3.02280751128944763674251069583,
1.91113329301265944928779355277, 3.59486991487819349566625928273, 5.15520813837550531855458318983, 7.37124917646129727597585952061, 8.749281084830674980893654728294, 9.678802075328873372790333170407, 10.57970530246585255993190735620, 11.91049142222315017987804321054, 12.47299811079381710247712652747, 13.74349436034626932759294383639