L(s) = 1 | + (−1.36 − 1.71i)2-s + (0.222 + 0.974i)3-s + (−0.628 + 2.75i)4-s + (−2.54 − 3.18i)5-s + (1.36 − 1.71i)6-s + (−0.811 − 3.55i)7-s + (1.63 − 0.786i)8-s + (−0.900 + 0.433i)9-s + (−1.99 + 8.73i)10-s + (3.17 + 1.53i)11-s − 2.82·12-s + (−0.834 − 0.402i)13-s + (−4.99 + 6.26i)14-s + (2.54 − 3.18i)15-s + (1.50 + 0.724i)16-s + 1.61·17-s + ⋯ |
L(s) = 1 | + (−0.968 − 1.21i)2-s + (0.128 + 0.562i)3-s + (−0.314 + 1.37i)4-s + (−1.13 − 1.42i)5-s + (0.559 − 0.701i)6-s + (−0.306 − 1.34i)7-s + (0.577 − 0.277i)8-s + (−0.300 + 0.144i)9-s + (−0.630 + 2.76i)10-s + (0.958 + 0.461i)11-s − 0.815·12-s + (−0.231 − 0.111i)13-s + (−1.33 + 1.67i)14-s + (0.656 − 0.823i)15-s + (0.376 + 0.181i)16-s + 0.392·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.881 + 0.472i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.881 + 0.472i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.115121 - 0.458901i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.115121 - 0.458901i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.222 - 0.974i)T \) |
| 29 | \( 1 + (-5.19 - 1.43i)T \) |
good | 2 | \( 1 + (1.36 + 1.71i)T + (-0.445 + 1.94i)T^{2} \) |
| 5 | \( 1 + (2.54 + 3.18i)T + (-1.11 + 4.87i)T^{2} \) |
| 7 | \( 1 + (0.811 + 3.55i)T + (-6.30 + 3.03i)T^{2} \) |
| 11 | \( 1 + (-3.17 - 1.53i)T + (6.85 + 8.60i)T^{2} \) |
| 13 | \( 1 + (0.834 + 0.402i)T + (8.10 + 10.1i)T^{2} \) |
| 17 | \( 1 - 1.61T + 17T^{2} \) |
| 19 | \( 1 + (-0.886 + 3.88i)T + (-17.1 - 8.24i)T^{2} \) |
| 23 | \( 1 + (-0.963 + 1.20i)T + (-5.11 - 22.4i)T^{2} \) |
| 31 | \( 1 + (1.00 + 1.25i)T + (-6.89 + 30.2i)T^{2} \) |
| 37 | \( 1 + (-4.77 + 2.30i)T + (23.0 - 28.9i)T^{2} \) |
| 41 | \( 1 + 6.71T + 41T^{2} \) |
| 43 | \( 1 + (-2.76 + 3.46i)T + (-9.56 - 41.9i)T^{2} \) |
| 47 | \( 1 + (3.00 + 1.44i)T + (29.3 + 36.7i)T^{2} \) |
| 53 | \( 1 + (-1.27 - 1.59i)T + (-11.7 + 51.6i)T^{2} \) |
| 59 | \( 1 - 7.29T + 59T^{2} \) |
| 61 | \( 1 + (-1.33 - 5.85i)T + (-54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 + (8.54 - 4.11i)T + (41.7 - 52.3i)T^{2} \) |
| 71 | \( 1 + (7.61 + 3.66i)T + (44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (-4.71 + 5.91i)T + (-16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 + (0.259 - 0.124i)T + (49.2 - 61.7i)T^{2} \) |
| 83 | \( 1 + (-1.44 + 6.31i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (-10.2 - 12.9i)T + (-19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + (2.23 - 9.80i)T + (-87.3 - 42.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.33328786289006017623822044689, −12.26080821337876697931680632070, −11.52254472677245687643893826720, −10.39695854605230818572181306643, −9.400053005328048438913470314270, −8.580606293894004414992790591931, −7.39727395962489050433871042774, −4.59451425935125874738159811682, −3.62433848994998155292623325916, −0.840602669496891280351210769258,
3.18949509739808649516602472934, 6.01415881187197505451899146134, 6.76954759821916524734056361812, 7.82421778983140250247807195449, 8.672680076593385096086781910154, 9.931916942921962243781696739186, 11.52106907446574385740040894749, 12.22238145556166435774378668696, 14.27757045370274437708462084493, 14.84494962934818121891519417654