L(s) = 1 | + (−1.36 − 1.71i)2-s + (0.222 + 0.974i)3-s + (−0.628 + 2.75i)4-s + (−2.54 − 3.18i)5-s + (1.36 − 1.71i)6-s + (−0.811 − 3.55i)7-s + (1.63 − 0.786i)8-s + (−0.900 + 0.433i)9-s + (−1.99 + 8.73i)10-s + (3.17 + 1.53i)11-s − 2.82·12-s + (−0.834 − 0.402i)13-s + (−4.99 + 6.26i)14-s + (2.54 − 3.18i)15-s + (1.50 + 0.724i)16-s + 1.61·17-s + ⋯ |
L(s) = 1 | + (−0.968 − 1.21i)2-s + (0.128 + 0.562i)3-s + (−0.314 + 1.37i)4-s + (−1.13 − 1.42i)5-s + (0.559 − 0.701i)6-s + (−0.306 − 1.34i)7-s + (0.577 − 0.277i)8-s + (−0.300 + 0.144i)9-s + (−0.630 + 2.76i)10-s + (0.958 + 0.461i)11-s − 0.815·12-s + (−0.231 − 0.111i)13-s + (−1.33 + 1.67i)14-s + (0.656 − 0.823i)15-s + (0.376 + 0.181i)16-s + 0.392·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(−0.881+0.472i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(−0.881+0.472i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
−0.881+0.472i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(82,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), −0.881+0.472i)
|
Particular Values
L(1) |
≈ |
0.115121−0.458901i |
L(21) |
≈ |
0.115121−0.458901i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.222−0.974i)T |
| 29 | 1+(−5.19−1.43i)T |
good | 2 | 1+(1.36+1.71i)T+(−0.445+1.94i)T2 |
| 5 | 1+(2.54+3.18i)T+(−1.11+4.87i)T2 |
| 7 | 1+(0.811+3.55i)T+(−6.30+3.03i)T2 |
| 11 | 1+(−3.17−1.53i)T+(6.85+8.60i)T2 |
| 13 | 1+(0.834+0.402i)T+(8.10+10.1i)T2 |
| 17 | 1−1.61T+17T2 |
| 19 | 1+(−0.886+3.88i)T+(−17.1−8.24i)T2 |
| 23 | 1+(−0.963+1.20i)T+(−5.11−22.4i)T2 |
| 31 | 1+(1.00+1.25i)T+(−6.89+30.2i)T2 |
| 37 | 1+(−4.77+2.30i)T+(23.0−28.9i)T2 |
| 41 | 1+6.71T+41T2 |
| 43 | 1+(−2.76+3.46i)T+(−9.56−41.9i)T2 |
| 47 | 1+(3.00+1.44i)T+(29.3+36.7i)T2 |
| 53 | 1+(−1.27−1.59i)T+(−11.7+51.6i)T2 |
| 59 | 1−7.29T+59T2 |
| 61 | 1+(−1.33−5.85i)T+(−54.9+26.4i)T2 |
| 67 | 1+(8.54−4.11i)T+(41.7−52.3i)T2 |
| 71 | 1+(7.61+3.66i)T+(44.2+55.5i)T2 |
| 73 | 1+(−4.71+5.91i)T+(−16.2−71.1i)T2 |
| 79 | 1+(0.259−0.124i)T+(49.2−61.7i)T2 |
| 83 | 1+(−1.44+6.31i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−10.2−12.9i)T+(−19.8+86.7i)T2 |
| 97 | 1+(2.23−9.80i)T+(−87.3−42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.33328786289006017623822044689, −12.26080821337876697931680632070, −11.52254472677245687643893826720, −10.39695854605230818572181306643, −9.400053005328048438913470314270, −8.580606293894004414992790591931, −7.39727395962489050433871042774, −4.59451425935125874738159811682, −3.62433848994998155292623325916, −0.840602669496891280351210769258,
3.18949509739808649516602472934, 6.01415881187197505451899146134, 6.76954759821916524734056361812, 7.82421778983140250247807195449, 8.672680076593385096086781910154, 9.931916942921962243781696739186, 11.52106907446574385740040894749, 12.22238145556166435774378668696, 14.27757045370274437708462084493, 14.84494962934818121891519417654