L(s) = 1 | + (1.14 − 1.43i)2-s + (0.222 − 0.974i)3-s + (−0.303 − 1.33i)4-s + (−1.40 + 1.76i)5-s + (−1.14 − 1.43i)6-s + (0.165 − 0.725i)7-s + (1.04 + 0.504i)8-s + (−0.900 − 0.433i)9-s + (0.922 + 4.03i)10-s + (−5.68 + 2.73i)11-s − 1.36·12-s + (1.48 − 0.714i)13-s + (−0.851 − 1.06i)14-s + (1.40 + 1.76i)15-s + (4.38 − 2.11i)16-s + 4.16·17-s + ⋯ |
L(s) = 1 | + (0.808 − 1.01i)2-s + (0.128 − 0.562i)3-s + (−0.151 − 0.665i)4-s + (−0.629 + 0.789i)5-s + (−0.467 − 0.585i)6-s + (0.0625 − 0.274i)7-s + (0.370 + 0.178i)8-s + (−0.300 − 0.144i)9-s + (0.291 + 1.27i)10-s + (−1.71 + 0.825i)11-s − 0.394·12-s + (0.411 − 0.198i)13-s + (−0.227 − 0.285i)14-s + (0.363 + 0.455i)15-s + (1.09 − 0.527i)16-s + 1.01·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(0.290+0.956i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(0.290+0.956i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
0.290+0.956i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(52,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), 0.290+0.956i)
|
Particular Values
L(1) |
≈ |
1.07338−0.795575i |
L(21) |
≈ |
1.07338−0.795575i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.222+0.974i)T |
| 29 | 1+(4.68+2.65i)T |
good | 2 | 1+(−1.14+1.43i)T+(−0.445−1.94i)T2 |
| 5 | 1+(1.40−1.76i)T+(−1.11−4.87i)T2 |
| 7 | 1+(−0.165+0.725i)T+(−6.30−3.03i)T2 |
| 11 | 1+(5.68−2.73i)T+(6.85−8.60i)T2 |
| 13 | 1+(−1.48+0.714i)T+(8.10−10.1i)T2 |
| 17 | 1−4.16T+17T2 |
| 19 | 1+(0.231+1.01i)T+(−17.1+8.24i)T2 |
| 23 | 1+(2.85+3.57i)T+(−5.11+22.4i)T2 |
| 31 | 1+(2.20−2.76i)T+(−6.89−30.2i)T2 |
| 37 | 1+(−0.969−0.466i)T+(23.0+28.9i)T2 |
| 41 | 1+1.20T+41T2 |
| 43 | 1+(7.99+10.0i)T+(−9.56+41.9i)T2 |
| 47 | 1+(−7.10+3.42i)T+(29.3−36.7i)T2 |
| 53 | 1+(8.22−10.3i)T+(−11.7−51.6i)T2 |
| 59 | 1−11.0T+59T2 |
| 61 | 1+(−1.43+6.28i)T+(−54.9−26.4i)T2 |
| 67 | 1+(−6.19−2.98i)T+(41.7+52.3i)T2 |
| 71 | 1+(−2.95+1.42i)T+(44.2−55.5i)T2 |
| 73 | 1+(−4.42−5.54i)T+(−16.2+71.1i)T2 |
| 79 | 1+(5.75+2.77i)T+(49.2+61.7i)T2 |
| 83 | 1+(−1.14−5.02i)T+(−74.7+36.0i)T2 |
| 89 | 1+(−5.80+7.28i)T+(−19.8−86.7i)T2 |
| 97 | 1+(−3.37−14.7i)T+(−87.3+42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.68477986512241917689039189821, −12.81938882166421447036056916606, −12.02050504283647730236679127649, −10.89013865084419211115554209392, −10.22060011920424518086121041236, −8.008697569370666197617668340366, −7.25640684521460144674291903025, −5.31148973087099081828135633612, −3.68821588661257684820173630756, −2.42521494632738723457307893262,
3.64903650112333742707224865203, 5.05181233627449719491525356057, 5.79281001245314802768439148892, 7.70229613149571380523816029499, 8.388187763864793944217306503595, 10.01382899820837782735571331021, 11.27699900407404653424500684347, 12.68595656100089856444479119597, 13.50330128522437668413479190721, 14.59190111820962048798259125435