L(s) = 1 | + (1.78 − 0.859i)2-s + (−0.623 − 0.781i)3-s + (1.19 − 1.50i)4-s + (−1.09 + 0.528i)5-s + (−1.78 − 0.859i)6-s + (0.245 + 0.307i)7-s + (−0.0337 + 0.147i)8-s + (−0.222 + 0.974i)9-s + (−1.50 + 1.88i)10-s + (0.554 + 2.43i)11-s − 1.92·12-s + (−0.735 − 3.22i)13-s + (0.701 + 0.337i)14-s + (1.09 + 0.528i)15-s + (0.922 + 4.04i)16-s − 4.30·17-s + ⋯ |
L(s) = 1 | + (1.26 − 0.607i)2-s + (−0.359 − 0.451i)3-s + (0.599 − 0.751i)4-s + (−0.491 + 0.236i)5-s + (−0.728 − 0.350i)6-s + (0.0926 + 0.116i)7-s + (−0.0119 + 0.0522i)8-s + (−0.0741 + 0.324i)9-s + (−0.476 + 0.596i)10-s + (0.167 + 0.733i)11-s − 0.555·12-s + (−0.203 − 0.893i)13-s + (0.187 + 0.0903i)14-s + (0.283 + 0.136i)15-s + (0.230 + 1.01i)16-s − 1.04·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.648 + 0.760i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.648 + 0.760i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.31901 - 0.608749i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.31901 - 0.608749i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.623 + 0.781i)T \) |
| 29 | \( 1 + (1.86 + 5.05i)T \) |
good | 2 | \( 1 + (-1.78 + 0.859i)T + (1.24 - 1.56i)T^{2} \) |
| 5 | \( 1 + (1.09 - 0.528i)T + (3.11 - 3.90i)T^{2} \) |
| 7 | \( 1 + (-0.245 - 0.307i)T + (-1.55 + 6.82i)T^{2} \) |
| 11 | \( 1 + (-0.554 - 2.43i)T + (-9.91 + 4.77i)T^{2} \) |
| 13 | \( 1 + (0.735 + 3.22i)T + (-11.7 + 5.64i)T^{2} \) |
| 17 | \( 1 + 4.30T + 17T^{2} \) |
| 19 | \( 1 + (-3.34 + 4.19i)T + (-4.22 - 18.5i)T^{2} \) |
| 23 | \( 1 + (2.70 + 1.30i)T + (14.3 + 17.9i)T^{2} \) |
| 31 | \( 1 + (-9.01 + 4.34i)T + (19.3 - 24.2i)T^{2} \) |
| 37 | \( 1 + (0.812 - 3.55i)T + (-33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 + 7.82T + 41T^{2} \) |
| 43 | \( 1 + (2.11 + 1.01i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (-1.90 - 8.32i)T + (-42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (-9.83 + 4.73i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 - 10.2T + 59T^{2} \) |
| 61 | \( 1 + (-2.32 - 2.91i)T + (-13.5 + 59.4i)T^{2} \) |
| 67 | \( 1 + (1.14 - 5.01i)T + (-60.3 - 29.0i)T^{2} \) |
| 71 | \( 1 + (-1.80 - 7.88i)T + (-63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (7.88 + 3.79i)T + (45.5 + 57.0i)T^{2} \) |
| 79 | \( 1 + (1.62 - 7.11i)T + (-71.1 - 34.2i)T^{2} \) |
| 83 | \( 1 + (2.33 - 2.93i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (9.38 - 4.51i)T + (55.4 - 69.5i)T^{2} \) |
| 97 | \( 1 + (10.1 - 12.6i)T + (-21.5 - 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.63692981013337820844174188839, −13.06333603176451627867364086828, −11.84577863036101994033090550882, −11.46898762746772847264017701163, −10.08377564760850675841894361234, −8.223933758845294494959907695022, −6.85902930013229628673272700306, −5.42641800393009191105941480260, −4.21712110329007367991069909983, −2.54215679615060119698579005786,
3.66740160253107730561586249301, 4.67441406496771689143352280681, 5.90853433365689050427506205142, 7.05101291507953887870061642382, 8.623092770098183662905856474212, 10.08496482764488674377084844213, 11.58396300389461956135187849472, 12.20746569336512079093491929639, 13.61813415860792534176184067111, 14.23330579335308102454371215832