L(s) = 1 | + (−2.50 − 1.20i)2-s + (0.623 − 0.781i)3-s + (3.56 + 4.46i)4-s + (2.28 + 1.10i)5-s + (−2.50 + 1.20i)6-s + (0.527 − 0.661i)7-s + (−2.29 − 10.0i)8-s + (−0.222 − 0.974i)9-s + (−4.39 − 5.51i)10-s + (−0.279 + 1.22i)11-s + 5.71·12-s + (0.494 − 2.16i)13-s + (−2.11 + 1.02i)14-s + (2.28 − 1.10i)15-s + (−3.83 + 16.8i)16-s + 3.75·17-s + ⋯ |
L(s) = 1 | + (−1.76 − 0.852i)2-s + (0.359 − 0.451i)3-s + (1.78 + 2.23i)4-s + (1.02 + 0.492i)5-s + (−1.02 + 0.492i)6-s + (0.199 − 0.250i)7-s + (−0.812 − 3.55i)8-s + (−0.0741 − 0.324i)9-s + (−1.38 − 1.74i)10-s + (−0.0843 + 0.369i)11-s + 1.65·12-s + (0.137 − 0.600i)13-s + (−0.566 + 0.272i)14-s + (0.590 − 0.284i)15-s + (−0.959 + 4.20i)16-s + 0.910·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.526 + 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.526 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.522023 - 0.290891i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.522023 - 0.290891i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.623 + 0.781i)T \) |
| 29 | \( 1 + (-4.24 - 3.31i)T \) |
good | 2 | \( 1 + (2.50 + 1.20i)T + (1.24 + 1.56i)T^{2} \) |
| 5 | \( 1 + (-2.28 - 1.10i)T + (3.11 + 3.90i)T^{2} \) |
| 7 | \( 1 + (-0.527 + 0.661i)T + (-1.55 - 6.82i)T^{2} \) |
| 11 | \( 1 + (0.279 - 1.22i)T + (-9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (-0.494 + 2.16i)T + (-11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 - 3.75T + 17T^{2} \) |
| 19 | \( 1 + (1.84 + 2.31i)T + (-4.22 + 18.5i)T^{2} \) |
| 23 | \( 1 + (5.78 - 2.78i)T + (14.3 - 17.9i)T^{2} \) |
| 31 | \( 1 + (0.518 + 0.249i)T + (19.3 + 24.2i)T^{2} \) |
| 37 | \( 1 + (-0.893 - 3.91i)T + (-33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 + 9.29T + 41T^{2} \) |
| 43 | \( 1 + (8.60 - 4.14i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (-0.626 + 2.74i)T + (-42.3 - 20.3i)T^{2} \) |
| 53 | \( 1 + (3.55 + 1.71i)T + (33.0 + 41.4i)T^{2} \) |
| 59 | \( 1 - 2.24T + 59T^{2} \) |
| 61 | \( 1 + (2.97 - 3.72i)T + (-13.5 - 59.4i)T^{2} \) |
| 67 | \( 1 + (-0.0320 - 0.140i)T + (-60.3 + 29.0i)T^{2} \) |
| 71 | \( 1 + (-1.13 + 4.99i)T + (-63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (1.24 - 0.598i)T + (45.5 - 57.0i)T^{2} \) |
| 79 | \( 1 + (0.0599 + 0.262i)T + (-71.1 + 34.2i)T^{2} \) |
| 83 | \( 1 + (4.26 + 5.34i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (-4.15 - 2.00i)T + (55.4 + 69.5i)T^{2} \) |
| 97 | \( 1 + (2.88 + 3.61i)T + (-21.5 + 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.77059105687630994354561604096, −12.65472005504019981324689488663, −11.60270799855220078889313773971, −10.29866760983284353268012804356, −9.875936978016397808563769683782, −8.558402936610543254441404295949, −7.59323603489120602776404489095, −6.43143307308723813462233884982, −3.09154966484573071098308588733, −1.71581533436500632589262428423,
1.91455088683630914974446783842, 5.39452862743073778796032762475, 6.40624947595454129014980299109, 8.033456228901254714643979793390, 8.778360091275642906152686775005, 9.782352911471439748439430531177, 10.38156616128725646636368702199, 11.81781348713223524384667220142, 13.86074442570908331572554390460, 14.63677874606697569757893119269