L(s) = 1 | + (−2.50 − 1.20i)2-s + (0.623 − 0.781i)3-s + (3.56 + 4.46i)4-s + (2.28 + 1.10i)5-s + (−2.50 + 1.20i)6-s + (0.527 − 0.661i)7-s + (−2.29 − 10.0i)8-s + (−0.222 − 0.974i)9-s + (−4.39 − 5.51i)10-s + (−0.279 + 1.22i)11-s + 5.71·12-s + (0.494 − 2.16i)13-s + (−2.11 + 1.02i)14-s + (2.28 − 1.10i)15-s + (−3.83 + 16.8i)16-s + 3.75·17-s + ⋯ |
L(s) = 1 | + (−1.76 − 0.852i)2-s + (0.359 − 0.451i)3-s + (1.78 + 2.23i)4-s + (1.02 + 0.492i)5-s + (−1.02 + 0.492i)6-s + (0.199 − 0.250i)7-s + (−0.812 − 3.55i)8-s + (−0.0741 − 0.324i)9-s + (−1.38 − 1.74i)10-s + (−0.0843 + 0.369i)11-s + 1.65·12-s + (0.137 − 0.600i)13-s + (−0.566 + 0.272i)14-s + (0.590 − 0.284i)15-s + (−0.959 + 4.20i)16-s + 0.910·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(0.526+0.850i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(0.526+0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
0.526+0.850i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), 0.526+0.850i)
|
Particular Values
L(1) |
≈ |
0.522023−0.290891i |
L(21) |
≈ |
0.522023−0.290891i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.623+0.781i)T |
| 29 | 1+(−4.24−3.31i)T |
good | 2 | 1+(2.50+1.20i)T+(1.24+1.56i)T2 |
| 5 | 1+(−2.28−1.10i)T+(3.11+3.90i)T2 |
| 7 | 1+(−0.527+0.661i)T+(−1.55−6.82i)T2 |
| 11 | 1+(0.279−1.22i)T+(−9.91−4.77i)T2 |
| 13 | 1+(−0.494+2.16i)T+(−11.7−5.64i)T2 |
| 17 | 1−3.75T+17T2 |
| 19 | 1+(1.84+2.31i)T+(−4.22+18.5i)T2 |
| 23 | 1+(5.78−2.78i)T+(14.3−17.9i)T2 |
| 31 | 1+(0.518+0.249i)T+(19.3+24.2i)T2 |
| 37 | 1+(−0.893−3.91i)T+(−33.3+16.0i)T2 |
| 41 | 1+9.29T+41T2 |
| 43 | 1+(8.60−4.14i)T+(26.8−33.6i)T2 |
| 47 | 1+(−0.626+2.74i)T+(−42.3−20.3i)T2 |
| 53 | 1+(3.55+1.71i)T+(33.0+41.4i)T2 |
| 59 | 1−2.24T+59T2 |
| 61 | 1+(2.97−3.72i)T+(−13.5−59.4i)T2 |
| 67 | 1+(−0.0320−0.140i)T+(−60.3+29.0i)T2 |
| 71 | 1+(−1.13+4.99i)T+(−63.9−30.8i)T2 |
| 73 | 1+(1.24−0.598i)T+(45.5−57.0i)T2 |
| 79 | 1+(0.0599+0.262i)T+(−71.1+34.2i)T2 |
| 83 | 1+(4.26+5.34i)T+(−18.4+80.9i)T2 |
| 89 | 1+(−4.15−2.00i)T+(55.4+69.5i)T2 |
| 97 | 1+(2.88+3.61i)T+(−21.5+94.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.77059105687630994354561604096, −12.65472005504019981324689488663, −11.60270799855220078889313773971, −10.29866760983284353268012804356, −9.875936978016397808563769683782, −8.558402936610543254441404295949, −7.59323603489120602776404489095, −6.43143307308723813462233884982, −3.09154966484573071098308588733, −1.71581533436500632589262428423,
1.91455088683630914974446783842, 5.39452862743073778796032762475, 6.40624947595454129014980299109, 8.033456228901254714643979793390, 8.778360091275642906152686775005, 9.782352911471439748439430531177, 10.38156616128725646636368702199, 11.81781348713223524384667220142, 13.86074442570908331572554390460, 14.63677874606697569757893119269